Для чего нужна зубчатая передача. Виды передач. Конические зубчатые колеса

Большинство механических передач включает в себя зубчатые зацепления. Зубчатые передачи используются для изменения скоростей вращательного движения, направлений вращения и моментов. Они служат для преобразования вращательного движения в поступательное и наоборот, для изменения пространственного расположения элементов трансмиссии и осуществления многих других функций, необходимых для работы машин и механизмов.

Зубчатые зацепления применяются для передачи вращательного движения от двигателя к исполнительному органу.

При этом производятся необходимые преобразования движения, изменение частоты вращения, крутящего момента, направления осей вращения.

Для всего этого служат различные виды передач. Классификация видов зубчатых передач по расположению осей вращения:

Нужно различать наружное и внутреннее зацепление. При внутреннем зацеплении зубья большего колеса располагаются на внутренней поверхности окружности, и вращение происходит в одном направлении. Это основные виды зацеплений.

Существует огромное количество возможностей для их сочетания и использования в различных кинематических схемах.

Форма зуба

Зацепления различаются по профилю и типу зубьев . По форме зуба различают эвольвентные, круговые и циклоидальные зацепления. Наиболее часто используемыми являются эвольвентные зацепления. Они имеют технологическое превосходство. Нарезка зубьев может производиться простым реечным инструментом. Эти зацепления характеризуются постоянным передаточным отношением, не зависящим от смещения межцентрового расстояния. Но при больших мощностях проявляются недостатки, связанные с небольшим пятном контакта в двух выпуклых поверхностях зубьев. Это может приводить к поверхностным разрушениям и выкрашиванию материала поверхностей.

В круговых зацеплениях выпуклые зубья шестерни сцепляются с вогнутыми колесами и пятно контакта значительно увеличивается. Недостатком этих передач является то, что появляется трение в колёсных парах. Виды зубчатых колёс:

Прямозубые колёсные пары имеют наибольшее распространение. Их легко проектировать, изготавливать и эксплуатировать .

Материалы для изготовления

Основной материал для изготовления колёсных пар - это сталь. Шестерня должна иметь более высокие прочностные характеристики, поэтому колёса часто изготавливают из разных материалов и подвергают разной термической или химико-термической обработке. Шестерни, изготовленные из легированной стали, подвергают поверхностному упрочнению методом азотирования, цементации или цианирования. Для углеродистых сталей используется поверхностная закалка.

Зубья должны обладать высокой поверхностной прочностью, а также более мягкой и вязкой сердцевиной. Это предохранит их от излома и износа поверхности. Колёсные пары тихоходных машин могут быть изготовлены из чугуна. В различных производствах применяются также бронза, латунь и различные пластики.

Способы обработки

Зубчатые колёса изготавливаются из штампованных или литых заготовок методом нарезания зубьев . Нарезание производится методами копирования и обкатки. Обкатка позволяет одним инструментом вырезать зубья различной конфигурации. Инструментами для нарезания могут быть долбяки, червячные фрезы или рейки. Для нарезания методом копирования используются пальцевые фрезы. Термообработка производится после нарезки, но для высокоточных зацеплений после термообработки применяется ещё шлифовка или обкатка.

Обслуживание и расчёт

Техобслуживание заключается в осмотре механизма, проверке целостности зубьев и отсутствия сколов. Проверка правильности зацепления производится при помощи краски, наносимой на зубья. Изучается величина пятна контакта и его расположение по высоте зуба. Регулировка производится установкой прокладок в подшипниковых узлах.

Сначала надо определиться с кинематическими и силовыми характеристиками, необходимыми для работы механизма. Выбирается вид передачи, допустимые нагрузки и габариты, затем подбираются материалы и термообработка. Расчёт включает в себя выбор модуля зацепления, после этого подбираются величины смещений, число зубьев шестерни и колеса, межосевое расстояние, ширина венцов. Все значения можно выбирать по таблицам или использовать специальные компьютерные программы.

Главными условиями, необходимыми для длительной работы зубчатых передач, являются износостойкость контактных поверхностей зубьев и их прочность на изгиб.

Достижению хороших характеристик и уделяется основное внимание при проектировании и изготовлении зубчатых механизмов.

Зубчатой передачей называется меха­низм, служащий для передачи вращательного движения с одного вала на другой и изменения частоты вращения посредством зубчатых колес и реек.

Зубчатое колесо, сидящее на передающем вращение валу, называется веду­щим, а на получающем вращение - ведомым. Меньшее из двух колес со­пряженной пары называют шестерней; большее - колесом; тер­мин «зубчатое колесо» относится к обеим деталям передачи.

Зубчатые передачи представляют собой наиболее распространенный вид передач в современном машиностроении. Они очень надежны в работе, обеспечивают постоянство передаточного числа, компактны, имеют высо­кий КПД, просты в эксплуатации, долговечны и могут передавать любую мощность (до 36 тыс. кВт).

К недостаткам зубчатых передач следует отнести: необходимость высо­кой точности изготовления и монтажа, шум при работе со значительными скоростями, невозможность бесступенчатого изменения передаточного числа.

В связи с разнообразием условий эксплуатации формы элементов зубча­тых зацеплений и конструкции передач весьма разнообразны.

Зубчатые передачи классифицируются по признакам, приведенным ниже.

  1. По взаимному расположению осей колес : с па­раллельными осями (цилиндрическая передача - рис. 172, I-IV); с пере­секающимися осями (коническая передача - рис. 172, V, VI); со скрещива­ющимися осями (винтовая передача - рис. 172, VII; червячная передача - рис. 172, VIII).
  2. В зависимости от относительного вращения колес и расположения зубьев различают передачи с внеш­ним и внутренним зацеплением. В первом случае (рис. 172, I-III) враще­ние колес происходит в противоположных направлениях, во втором (рис. 172, IV) - в одном направлении. Реечная передача (рис. 172, IX) служит для преобразования вращательного движения в поступательное.
  3. По форме профиля различают зубья эвольвентные (рис. 172, I, II) и неэвольвентные, например цилиндрическая передача Новикова, зу­бья колес которой очерчены дугами окружности.
  4. В зависимости от расположения теоретичес­кой линии зуба различают колеса с прямыми зубьями (рис. 173, I), косыми (рис. 173, II), шевронными (рис. 173, III) и винтовыми (рис. 173, IV). В непрямозубых передачах возрастает плавность работы, уменьшается износ и шум. Благодаря этому непрямозубые передачи большей частью применяют в установках, требующих высоких окружных скоростей и пере­дачи больших мощностей.
  5. По конструктивному оформлению различают закры­тые передачи, размещенные в специальном непроницаемом корпусе и обес­печенные постоянной смазкой из масляной ванны, и открытые, работаю­щие без смазки или периодически смазываемые консистентными смазками (рис. 174).
  6. По величине окруж­ной скорости различают: тихо­ходные передачи (v равной до 3 м/с), среднескоростные (v равной от 3... 15 м/с) и быстроходные (v более 15 м/с).

Рис. 172

Рис. 173


Рис. 174

Основы теории зацепления

Боковые грани зубьев, соприкасаю­щиеся друг с другом во время враще­ния колес, имеют специальную кри­волинейную форму, называемую про­филем зуба. Наиболее распространен­ным в машиностроении является эвольвентный профиль (рис. 175).

Рис. 175

Придание профилям зубьев зубча­тых зацеплений таких очертаний не является случайностью. Чтобы зубья двух колес, находящихся в зацепле­нии, могли плавно перекатываться один по другому, необходимо было вы­брать такой профиль для зубьев, при котором не происходило бы перекосов и защемления головки одного зуба во впадине другого.

На рис. 176 изображена пара зубчатых колес, находящихся в зацепле­нии. Линия, соединяющая центры колес О 1 и О 2 называется линией центров или межосевым расстоянием - a w .

Рис. 176

Точка Р касания начальных окружностей d W 1 и d W 2 - полюс - все­гда лежит на линии центров. Начальными называются окружнос­ти, касающиеся друг друга в полюсе зацепления, имеющие общие с зуб­чатыми колесами центры и перекатывающиеся одна по другой без сколь­жения.

Если проследить за движением пары зубьев двух колес с момен­та, когда они впервые коснутся друг друга до момента, когда они выйдут из зацепления, то ока­жется, что все точки касания их в процессе движения будут лежать на одной прямой NN. Прямая NN, проходящая через полюс за­цепление Р и касательная к ос­новным* окружностям db 1 , db 2 , двух сопряженных колес, назы­вается линией зацепле­ния . Отрезок g a линии зацепле­ния, отсекаемый окружностями выступов сопряженных колес, - активная часть линии зацепле­ния, определяющая начало и ко­нец зацепления пары сопряжен­ных зубьев.

Линия зацепления представ­ляет собой линию давления со­пряженных профилей зубьев в процессе эксплуатации зубча­той передачи.

Угол? w между линией зацеп­ления и перпендикуляром к ли­нии центров O 1 О 2 называется углом зацепления. В основу профилирования эвольвентных зубьев и инструмента для их на­резания положен стандартный по ГОСТ 13755-81 исходный контур так называемой рейки, равный 20°.

Во время работы цилиндри­ческой прямозубой передачи сила давления Р n ведущей шес­терни O 1 в начале зацепления передается ножкой зуба на со­пряженную боковую поверх­ность (контактную линию) головки ведомого колеса О 2 . Чем больше пара зубьев одновременно находится в зацеплении, тем более плавно работает передача, тем меньшую нагрузку воспринимает на себя каждый зуб.

Стремление сделать зубчатую передачу более компактной вызывает не­обходимость применять зубчатые колеса с возможно меньшим числом зубь­ев. Изменение количества зубьев зубчатого колеса влияет на их форму (рис. 177). При увеличе­нии числа зубьев до бесконечно­сти колесо превращается в рейку и зуб приобретает пря­молинейное очертание. С умень­шением числа зубьев одновре­менно уменьшается толщина зу­ба у основания и вершины, а так­же увеличивается кривизна эвольвентного профиля, что приводит к уменьшению проч­ности зуба на изгиб. При умень­шении числа зубьев, когда z < z mim , происходит так называе­мое подрезание зубьев, то есть явление, когда зубья большого колеса при вращении заходят в область ножки меньшего колеса (см. заштрихованная площадь на рис. 177), тем самым ослабляя зуб в самом опасном сечении, увеличивая износ зубьев и снижая КПД передачи.

Рис. 177

На практике подрезку зубьев предотвращают прежде всего выбором со­ответствующего числа зубьев. Наименьшее число зубьев (z min), при кото­ром еще не происходит подрезание, рекомендуется выбирать от 35 до 40 при равном 15° и от 18 до 25 при? w равном 20°.

В отдельных случаях приходится выполнять передачу с числом зубьев меньшим, чем рекомендуется, при этом производят исправление, или, как говорят, корригирование формы зубьев. Один из таких способов заключает­ся в изменении высоты головки и ножки зуба до h a = 0,8m; h f = m. Этот спо­соб исключает подрезку, но увеличивает износ зубьев.

Теперь обратимся к изложению основной теоремы зацепления: общая нормаль (линия зацепления NN) к сопряженным профилям зубьев делит межосевое расстояние (? w = О 1 О 2) на отрезки (О 1 Р и 0 2 Р), обратно пропор­циональные угловым скоростям (w 1 и w 2). Если положение точки Р (полю­са зацепления) неизменно в любой момент зацепления, то передаточное от­ношение - отношение частоты вращения ведущего колеса к частоте враще­ния ведомого - будет постоянным.

0 2 Р / O 1 P = w 1 /w 2 = i = const.

4.3. Основные элементы зубчатых зацеплений. При изменении осевого расстояния? w = О 1 О 2 пары зубчатых колес будет меняться и положение по­люса зацепления Р на линии центров, а следовательно, и величина диаметров начальных окружностей, то есть у пары сопряженных зубчатых колес может быть бесчисленное множество начальных окружностей. Следует отметить, что понятие начальные окружности относится лишь к паре со­пряженных зубчатых колес. Для отдельно взятого зубчатого колеса нельзя говорить о начальной окружности.

Если заменить одно из колес зубчатой рейкой, то для каждого зубчатого колеса найдется только одна окружность, катящаяся по начальной прямой рейке без скольжения, - эта окружность называется делительной .

Примечание. В настоящей книге рассматриваются зубчатые передачи, у которых на­чальные и делительные окружности совпадают.

Так как у каждого зубчатого колеса имеется только одна делительная ок­ружность, то она и положена в основу определения основных параметров

зубчатой передачи по ГОСТ 16530- 83 и ГОСТ 16531-83 (рис. 178)

Рис. 178

Основные параметры зубчатых колес:

1. Делительными окружностя­ми пары зубчатых колес называ­ются соприкасающиеся окружно­сти, катящиеся одна по другой без скольжения. Эти окружности, на­ходясь в зацеплении (в передаче), являются сопряженными. На чер­тежах диаметр делительной ок­ружности обозначают буквой d.

2. Окружной шаг зубьев Р t - расстояние (мм) между одноимен­ными профильными поверхностя­ми соседних зубьев. Шаг зубьев, как нетрудно представить, равен делительной окружности, разде­ленной на число зубьев z.

3. Длина делительной окруж­ности. Модуль. Длину делитель­ной окружности можно выразить через диаметр и число зубьев: Пd = P t r. Отсюда диаметр делитель­ной окружности d = (Рt z)/П.

Отношение P t /П называется модулем зубчатого зацепления и обозначается буквой т. Тогда диаметр дели­тельной окружности можно выразить через модуль и число зубьев d = m z. Отсюда m = d/z.

Значение модулей для всех передач - вели­чина стандартизированная.

Для понимания зависимости между вели­чинами Р t т и d приведена схема на рис. 178, II, где условно показано размещение всех зубь­ев 2 колеса по диаметру ее делительной окруж­ности в виде зубчатой рейки.

4. Высота делительной головки зуба h a - расстояние между делительной окружностью колеса и окружностью вершин зубьев.

5. Высота делительной ножки зуба h f - расстояние между делительной окружностью колеса и окружностью впадин.

6. Высота зуба h - расстояние между ок­ружностями вершин зубьев и впадин цилинд­рического зубчатого колеса h = h a + h f . .

7. Диаметр окружности вершин зубьев d a - диаметр окружности, ограничивающей вершины головок зубьев.

8. Диаметр окружности впадин зубьев d f - диаметр окружности, прохо­дящей через основания впадин зубьев.

При конструировании механизма конструктор рассчитывает величину модуля т для зубчатой передачи и, округлив, подбирает модуль по таблице стандартизированных величин. Затем он определяет величины остальных геометрических элементов зубчатого колеса.

Зубчатые передачи с зацеплением M.Л. Новикова

В этом зацепле­нии профиль зубьев выполняется не по эвольвенте, а по дуге окружности или по кривой, близкой к ней (рис. 179).

Рис. 179

При зацеплении выпуклые зубья одного из колес контактируют с вогнуты­ми зубьями другого. Поэтому площадь соприкосновения одного зуба с другим в передаче Новикова значительно больше, чем в эвольвентных передачах. Касание сопряженных профилей теоретически происходит в точке, поэтому данный вид зацепления называют точечным .

При одинаковых с эвольвентным зацеплением параметрах точечная систе­ма зацепления с круговым профилем зуба обеспечивает увеличение контакт­ной прочности, что в свою очередь позволяет повысить нагрузочную способ­ность передачи в 2...3 раза по сравнению с эвольвентной. Взаимодействие зу­бьев в сравниваемых передачах также различно: в эвольвентном зацеплении преобладает скольжение, а в зацеплении Новикова - качение. Это создает благоприятные условия для увеличения масляного слоя между зубьями, уменьшения потерь на трение и увеличения сопротивления заеданию.

К достоинствам зацепления Новикова относятся возможность примене­ния его во всех видах зубчатых передач: с параллельными, пересекающи­мися и скрещивающимися осями колес, с внешним и внутренним зацепле­нием, постоянным и переменным передаточным отношением. Потери на трение в этой системе зацепления примерно в 2 раза меньше потерь в эвольвентном зацеплении, что увеличивает КПД передачи.

К основным недостаткам передач с зацеплением Новикова относятся: технологическая трудоемкость изготовления колес, ширина колес должна быть не менее 6 модулей и др. В настоящее время передачи с зацеплением Новикова находят применение в редукторах больших размеров.

Виды зубчатых передач

Виды зубчатых передач: а, б, в -- цилиндрические зубчатые передачи с внешним зацеплением; г -- передача винт-гайка; д -- цилиндрическая передача с внутренним зацеплением; е -- зубчатая винтовая передача; ж, з, и -- конические зубчатые передачи; к -- гипоидная передача

Зубчатые передачи и колеса классифицируют по следующим признакам

  • 1. По взаимному расположению геометрических осей валов различают передачи :
    • - с параллельными осями - цилиндрические (рис. 1 а-г);
    • - с пересекающимися осями - конические (рис. 1 д, е);
    • - со скрещивающимися осями - цилиндрические винтовые (рис. 1 ж);
    • - конические гипоидные и червячные (рис. 1 з);
    • - реечная передача (рис. 1 и).

Рисунок 1

  • 2. В зависимости от взаимного расположения зубчатых колёс :
    • - с внешним зацеплением (колёса передач вращаются в противоположных направлениях) (рис. 2 а);
    • - с внутренним зацеплением (направление вращения колёс совпадают) (рис. 2 б). Колёса внутреннего зацепления вращаются в одинаковых направлениях и применяются обычно в планетарных передачах.
    • -реечное зацепление (рис. 2 в);

Рисунок 2

  • 3. По расположению зубьев на поверхности колёс различают передачи :
    • - прямозубые; косозубые; шевронные; с круговым зубом (рис. 3).
  • 4. По форме профиля зуба различают передачи :
    • - эвольвентные;
    • - с зацеплением М. Л. Новикова;
    • - с эллиптическим профилем
    • -циклоидальное

Формы зубьев эвольвентного профиля

Формы зубьев эллиптического профиля (новая зубчатая передача Г.П.Гребенюка).

Формы зубьев в передачах с зацеплением М.Л. Новикова

  • 5. По конструктивному исполнению: передачи могут быть открытые (не защищены от влияния внешней среды) и закрытые (изолированные от внешней среды).
  • 6. В зависимости от числа ступеней: одно- и многоступенчатые.

Многоступенчатая.

7. В зависимости от относительного характера движения валов различают рядовые и планетарные.

Планетарная передача.

  • 8. По окружной скорости :
    • -тихоходные (до 3 м/с);
    • - для средних скоростей (3--15 м/с);
    • - быстроходные (св. 15 м/с);
  • 9. По точности зацепления.

Стандартом предусмотрено 12 степеней точности. Практически передачи общего машиностроения изготовляют от шестой до десятой степени точности. Передачи, изготовленные по шестой степени точности, используют для наиболее ответственных случаев.

Из перечисленных выше зубчатых передач наибольшее распространение получили цилиндрические прямозубые и косозубые передачи, как наиболее простые в изготовлении и эксплуатации. Преимущественное распространение получили передачи с зубьями эвольвентного профиля. Достоинство эвольвентного зацепления состоит в том, что оно малочувствительно к колебанию межцентрового расстояния.

Другие виды зацепления применяются пока ограниченно. Так, циклоидальное зацепление, при котором возможна работа шестерен с очень малым числом зубьев (2-3), не может быть, к сожалению, изготовлено современным высокопроизводительным методом обкатки, поэтому шестерни этого зацепления трудоемки в изготовлении и дороги; новое пространственное зацепление Новикова пока еще не получило массового распространения, вследствие большой чувствительности к колебаниям межцентрового расстояния.

Прямозубые колёса (около 70%) применяют при невысоких и средних скоростях, когда динамические нагрузки от неточности изготовления невелики, в планетарных, открытых передачах, а также при необходимости осевого перемещения колёс.

Косозубые колёса (более 30%) имеют большую плавность хода и применяются для ответственных механизмов при средних и высоких скоростях.

Шевронные колёса имеют достоинства косозубых колёс плюс уравновешенные осевые силы и используются в высоконагруженных передачах.

Конические передачи применяют только в тех случаях, когда это необходимо по условиям компоновки машины; винтовые -- лишь в специальных случаях.

3. Рассмотрим более подробно некоторые виды передач

Винтовая передача.

Винтовая передача (разновидность косозубой) состоит из двух косозубых цилиндрических колес. Однако в отличие от косозубых цилиндрических передач с параллельными валами касания между зубьями здесь происходит в точке и при значительных скоростях скольжения. Поэтому при значительных нагрузках винтовые зубчатые передачи работать удовлетворительно не могут.

Винтовая зубчатая передача

Коническая передача

Коническая передача состоит из двух конических зубчатых колес и служит для передачи вращающего момента между валами с пересекающимися осями под углом. Колеса конических передач выполняют с прямыми, косыми, круговыми зубьями.

  • а) -- колесо с прямыми зубьями;
  • Б) -- колесо с косыми зубьями;
  • В) -- колесо с круговыми зубьями

Гипоидная передача.

Передачу с коническими колесами для передачи вращающего момента между валами со скрещивающимися осями называют гипоидной. Эта передача находит применение в автомобилях.

Гипоиднаяя передача.

Червячные передачи

Червячная передача - это передача, которая состоит из винта, называемого червяком и червячного колеса. Червячная передача применяется для передачи вращения от одного вала к другому, когда оси валов перекрещиваются. Угол перекрещивания в большинстве случаев равен 90?. Червячная передача относится к зубчато - винтовым в отличии от косозубого колеса, обод червячного имеет вогнутую форму, это способствует облеганию червяка и соответственно длинны контактной линии, резьба червяка может быть однозаходной или многозаходной, а так же правой или левой.

Червячная передача

Червяки различают по следующим признакам: по форме поверхности, на которой образуется резьба, - цилиндрические и глобоидные; по форме профиля резьбы - архимедовы и эвольвентные цилиндрические червяки. Архимедов червяк имеет трапецеидальный профиль резьбы в осевом сечении, в торцевом сечении витки резьбы очерчены архимедовой спиралью.

Цилиндрический и глобоидный виды.

Эвольвентный червяк представляет собой косозубое зубчатое колесо с малым числом зубьев и большим углом их наклона. Профиль витка в торцевом сечении очерчен эвольвентой.

Наибольшее применение в машиностроении находят архимедовы червяки, так как технология их производства проста и наиболее отработана.

Профиль зубьев червячных колес в передачах эвольвентный. Поэтому зацепление в червячной передаче представляет собой эвольвентное зацепление зубчатого колеса с зубчатой рейкой.

Планетарная передача

Наиболее распространена зубчатая однорядная планетарная передача. Она состоит из центрального колеса 1 с наружными зубьями, неподвижного (центрального) колеса 2 с внутренними зубьями и водила на котором закреплены оси планетарных колес (или сателлитов).

Планетарная передача

Волновые зубчатые передачи.

Волновые передачи основаны на принципе передачи вращательного движения за счет бегущей волновой деформации одного из зубчатых колес.

Такая передача была запатентована американским инженером Массером в 1959 г.

Волновая зубчатая передача

Кинематически эти передачи представляют собой разновидность планетарной передачи с одним гибким зубчатым колесом. На рисунке изображены основные элементы волновой передачи: неподвижное колесо с внутренними зубьями, вращающееся упругое колесо с наружными зубьями и водило h. Неподвижное колесо закрепляется в корпусе и выполняется в виде обычного зубчатого колеса с внутренним зацеплением. Гибкое зубчатое колесо имеет форму стакана с легко деформирующейся тонкой стенкой: в утолщенной части (левой) нарезаются зубья, правая часть имеет форму вала. Водило, состоит из овального кулачка и специального подшипника.

При вращении водила овальной формы образуются две волны. Такую передачу называют двухволновой. Бывают трехволновые передачи, ниже показана схема такой передачи.

зубчатый передача эвольвентный винтовой

Волновые передачи обладают большой нагрузочной способностью (в зацеплении находится большое число пар -- зубьев) и высоким передаточным числом (< 300 для одной ступени) при сравнительно малых габаритах. Это основные достоинства этих передач. Передача может работать, находясь в герметизированном корпусе, что очень важно для использования волновых передач в химической, авиационной и других отраслях техники.

Недостатки волновой передачи: практически индивидуальное, дорогостоящее, весьма трудоемкое изготовление гибкого колеса и волнового генератора; возможность использования этих передач только при сравнительно невысокой угловой скорости вала генератора; ограниченные обороты ведущего вала (во избежание больших центробежных сил инерции некруглого генератора волн; мелкие модули зубьев 1,5-2 мм)

Зубчатые передачи с зацеплением Новикова.

Передачи с зацеплением Новикова состоят из двух цилиндрических косозубых колес или конических колес с винтовыми зубьями и служат для передачи момента между валами с параллельными или пересекающимися осями. Особенность зацепления Новикова состоит в том, что в этом зацеплении первоначальный линейный контакт заменен точечным, превращающимся под нагрузкой в контакт с хорошим прилеганием. Простейшими профилями зубьев, обеспечивающими такой контакт, являются профили, очерченные по дуге окружности или близкой к ней кривой

Профили зубьев в передачах с зацеплением М. Л. Новикова

В зацеплении Новикова контакт зубьев теоретически осуществляется в точке, в эвольвентном зацеплении соприкосновение зубьев происходит по линии. Однако при одинаковых габаритных размерах передачи соприкосновение зубьев в зацеплении Новикова значительно лучше, чем соприкосновение в эвольвентном зацеплении.

К сожалению, при этом приходится пожертвовать основным достоинством эвольвентных зацеплений - качением профилей зубьев друг по другу и соответственно получить высокое трение в зубьях. Однако для тихоходных машин это не так важно.

К достоинствам зацепления Новикова относятся возможность применения его во всех видах зубчатых передач: с параллельными, пересекающимися и скрещивающимися осями колес, с внешним и внутренним зацеплением, постоянным и переменным передаточным отношением. Потери на трение в этой системе зацепления примерно в 2 раза меньше потерь в эвольвентном зацеплении, что увеличивает КПД передачи.

К основным недостаткам передач с зацеплением Новикова относятся: технологическая трудоемкость изготовления колес, ширина колес должна быть не менее 6 модулей и др. В настоящее время передачи с зацеплением Новикова находят применение в редукторах больших размеров.

Практически любой механизм в современной технике отчасти или полностью состоит из различных типов передач. В большинстве случаев в качестве передаточных устройств движения используются именно зубчатые элементы В данной статье будет подробнейшим образом рассмотрена классификация зубчатых передач. Об их разновидностях и особенностях мы и поговорим.

Определение

Итак, с технической точки зрения зубчатой передачей является механизм, который служит для передачи вращения с одного вала на другой и для изменения частоты вращения с помощью реек и колес.

Классификация зубчатых передач гласит, что зубчатое колесо, расположенное на валу, передающем вращение, принято называть ведущим, а принимающее вращение - ведомым. Также тот элемент, который обладает в паре меньшими размерами, называют шестерней, а то, которое большими - колесом.

Сфера применения

Классификация, основные параметры и особенности работы которых будут описаны ниже, вполне обосновано считаются самыми распространёнными деталями в машиностроении и прочих отраслях народного хозяйства. Такая высокая востребованность объясняется возможностью передачи с их помощью мощностей в диапазоне от нескольких долей до нескольких десятков тысяч киловатт. При этом окружные скорости вращения могут составлять до 150 м/с, а передаточные числа колеблются от сотен до тысяч. Диаметр самих колес находится в пределах от считанных миллиметров (иногда даже их долей) до шести и более метров.

Дифференциация

Назначение и классификация зубчатых передач предусматривает их разделение по следующим признакам:

1. По расположению осей колес в пространстве:

  • с параллельными осями (цилиндрические передачи);
  • с пересекающимися осями (конические передачи);
  • со скрещивающимися осями (червячные и

2. По типу относительного вращения колес и расположению зубьев:

3. По форме профиля:

  • эвольвентные зубья;
  • циклоидальные;

4. По расположению теоретической линии зуба:

  • прямозубые колеса;
  • косозубые;
  • шевронные;
  • винтовые (с круговым зубом).

Стоит отметить, что непрямозубые передачи обладают большой плавностью своей работы, в них гораздо меньший износ и шум по сравнению с прямозубыми передачами.

5. По показателю окружной скорости:

  • тихоходные передачи (менее 3 м/с);
  • среднескоростные (от 3 м/с до 15 м/с);
  • быстроходные (свыше 15 м/с).

Градация по областям применения

Классификация зубчатых передач по функциональному назначению предусматривает их деление на:

  • Кинематические (отсчетные) передачи. Их применяют в разнообразных приборах, счетно-решающих механизмах. Главное требование к таким передачам - соблюдение высочайшей кинематической точности, то есть должна быть чёткая согласованность углов поворота как ведущего, так и ведомого колес.
  • Скоростные передачи применяются в редукторах турбомашин, коробках передач автомобилей. Требования: максимально возможная плавность работы.
  • Силовые передачи эксплуатируются в крановых и прокатных механизмах. Они работают при малых скоростях, но при этом передают внушительные крутящие моменты. Главное требование, выдвигаемое к передачам данного типа, - плотный контакт зубьев, находящихся между собой в сопряжении.

Дополнительные критерии

Классификация зубчатых передач по конструктивному оформлению учитывает, что они могут быть открытого и закрытого типа. Открытые передачи могут работать либо без смазки (крайне редко), либо же обрабатываться специальными консистентными смазочными веществами.

Закрытые передачи, в свою очередь, смазываются за счет погружения зубьев в специальное масло, которым заполоняют картер (погружное смазывание). В некоторых случаях предусмотрена централизованная подача состава в картер. При этом регулировка потока смазывающей жидкости осуществляется с помощью специальных дросселей.

В зависимости от того, как меняется частота вращения, зубчатые передачи разделяются на:

  • понижающие (их называют редукторами). В таких передачах передаточное отношение больше или равно единице.
  • Мультипликаторы - передаточное число меньше единицы.

Кстати, бывают как постоянными, так и ступенчато-регулируемыми благодаря перемещению колес непосредственно по валу (например, коробка скоростей).

Положительные качества

Классификация зубчатых передач будет неполной, если не рассмотреть их достоинства. В сравнении с другими типами передач зубчатые характеризуются:

  • Технологичностью.
  • Постоянством передаточного отношения.
  • Высокой нагрузочной способностью (до 50000 кВт).
  • Внушительным коэффициентом полезного действия (до 0,99).
  • Малыми габаритными размерами по сравнению с прочими передачами при одинаковых условиях.
  • Большой надежностью во время работы.
  • Простотой обслуживания.

Отрицательные качества

Что касается недостатков зубчатых передач, то в их числе значатся:

  • Отсутствие возможности изменять передаточное число бесступенчато.
  • Точность изготовления и монтажа должна быть на высоком уровне.
  • Возникновение шума при больших скоростях работы.
  • Неудовлетворительные амортизирующие свойства.
  • Большие габариты в случаях, когда между осями ведомого и ведущего валов внушительное расстояние.
  • Нарезание зубьев требует наличия специального оборудования и инструмента.
  • Неспособность к компенсации динамических нагрузок по причине высокой жестокости.
  • Отсутствие предохранительной функции. Зубчатая передача не способна защитить машину или механизм от перегрузки.

Также зубчатые передачи (достоинства и недостатки, классификация и виды которых указаны выше) нерационально используют свои зубья, что проявляется в одновременной работе не более двух зубьев каждого из колес, находящихся в сопряжении.

Деформация зубьев колес

Правильная проектировка и эксплуатация зубчатой передачи проявляется в отсутствии сильного шума и перегрева во время работы. Если эти два указанных критерия все же имеют несоответствия, то это вполне может привести к разрушениям зубьев колес. Классификация зубчатых передач по эксплуатационному назначению также вносит свои корректировки в работу передачи, однако в целом виды разрушений зубьев бывают следующие:

  • Пластическая деформация рабочих поверхностей.
  • Поломка.
  • Заедание.
  • Изнашивание.
  • Выкрашивание.

В тех случаях, когда зубья ломаются, зачастую происходит не только поломка передачи, но и повреждение различных смежных узлов, деталей (например, разрушаются подшипники, валы). Это происходит по причине заклинивающего действия отломившихся кусочков.

Довольно часто зубья ломаются по причине своей «усталости», которая появляется как следствие возникновения и прогрессивного развития трещины. Такой вид поломки более всего характерен для закрытых передач.

Истирание зубьев чаще всего наблюдается в открытых передачах, что объясняется проникновением в зону зацепления разнообразных частиц металла, грязи, пыли (абразивный износ). Также причиной может служить плохая смазка, поэтому от данного не застрахованы и закрытые передачи.

Производство колес

Важно знать, что зубчатые передачи, достоинства и недостатки, классификация которых зависят от их технологических и физических свойств, изготавливаются из различных материалов.

Чаще всего на практике применяются такие:

  • обыкновенного качества (Ст6, Ст5).
  • Высококачественные марки стали.
  • Легированные марки сталей.
  • Серый и высококачественный чугун.
  • Некоторые неметаллические материалы (бакелит, текстолит).

Наибольшее распространение получили передачи с зубчатыми колесами из стали, что объясняется оптимальным сочетанием прочности, надёжности и массы. Такой материал идеально подходит для высоконагруженных передач.

В свою очередь, серый чугун используется для колес, работающих нечасто, а также тихоходных открытых передач. Чугун хорош тем, что зубья колес на его основе не слишком требовательны к смазке и хорошо притираются друг к другу.

Пластмассовые зубчатые колеса производят для механизмов, где требуется максимальная бесшумность работы высокоскоростной передачи, при этом не нужна высокая точность изготовления.

Твердость и термическая обработка

Зубчатые передачи, классификация, применение которых находятся также в зависимости от несущей способности, в обязательном порядке проходят термообработку.

Зубчатые колеса из стали условно делят на две группы:

  • Колеса с твердостью зубьев менее 350 НВ. Такой показатель формируется благодаря нормализации или улучшению стали. Непосредственно зубья нарезают уже после термической обработки.
  • Колеса, твердость которых превышает 350 НВ. Такую твёрдость обеспечивает химико-термическое упрочнение: цементация, азотирование, цианирование, поверхностная закалка с помощью токов высокой частоты.

Смазывание зубчатых колес

Классификация зубчатых передач по расположению зубьев будет неполной, если не рассмотреть вопрос смазывания зубчатого зацепления. Сам по себе процесс смазки ориентирован на понижение скорости износа зубьев, отвод тепла и мелких абразивных частиц, повышение КПД всей передачи. Благодаря применению качественных смазочных материалов повышается сопротивляемость колес к заеданию. В роли смазки могут выступать пластичные, жидкие и твердые материалы.

Пластичная смазка чаще всего применяется в открытых передачах, которые работают с температурой не более +120 градусов. Твёрдая смазка эксплуатируется также в открытых передачах, но в тех, рабочая температура которых превышает 100 градусов по Цельсию. Самой востребованной смазкой является жидкая. Наибольшую популярность получили нефтяные масла. Что касается синтетических материалов смазки, то их применяют лишь в особых случаях, поскольку цена их достаточно высока.

Обозначение жидких масел следующее:

  • Индустриальное масло - литера И.
  • Для использования в гидравлических системах - Г.
  • Для тяжелонагруженных передач - Т.
  • Масло, имеющее антикоррозионные, антиокислительные, противоизносные присадки, - С.
  • Масло, не имеющее каких-либо присадок, - А.

Конические зубчатые колеса

Классификация конических зубчатых передач в упрощенном варианте имеет следующий вид:

  • Колеса конические зубчатые с прямыми зубьями.
  • С тангенциальными зубьями.
  • С криволинейными зубьями.
  • С круговыми зубьями.
  • С линией зубьев в виде эвольвенты.

Прямозубые конические колеса чаще всего применяются в открытых передачах, а вот элементы с круговыми зубьями задействованы в редукторах.

Характеристики и обозначения

Основные параметры, на которые опирается классификация зубчатых передач, таковы:

  • Число зубьев - Z.
  • Межосевое расстояние - a.
  • Ширина венца колеса - b.
  • Радиальный зазор - с.
  • Высота ножки зуба - ha.
  • Высота зуба - h.
  • Делительный диаметр - d.
  • Начальный диаметр - dw.
  • Диаметр впадин зубьев - dr.
  • Диаметр вершин зубьев - da.

Производство зубчатых передач

Зубчатые колеса производятся на автоматических линиях. Эти узкоспециализированные линии делятся на короткие и комплексные. Первая группа связана лишь с нарезанием и отделкой зубчатых колес. Вторая представляет собой совокупность станков самого различного предназначения, которые обеспечивают полноценное изготовление зубчатых колес. В таких линиях применяются полуавтоматические станки для зубообработки, дополнительно укомплектованные загрузочно-разгрузочными и прочими устройствами автоматизации.

В технологических линиях производства колес между производственными станками чаще всего применяют гибкие транспортные связи в виде ленточных и цепных транспортеров, а также подвижных передаточных тележек, которые исключают возникновение забоин и прочих дефектов.

ЗУБЧАТЫЕ ПЕРЕДАЧИ

П л а н л е к ц и и

1. Общие сведения.

2. Классификация зубчатых передач.

3. Геометрические параметры зубчатых колес.

4. Точность преобразования параметров.

5. Динамические соотношения в зубчатых зацеплениях.

6. Конструкция колес. Материалы и допускаемые напряжения.

1. Общие сведения

Зубчатая передача – это механизм, который с помощью зубчатого зацепления передает или преобразует движение с изменением угловых скоростей и моментов. Зубчатая передача состоит из колес с зубьями, которые сцепляются между собой, образуя ряд последовательно работающих кулачковых механизмов.

Зубчатые передачи применяют для преобразования и передачи вращательного движения между валами с параллельными, пересекающимися или перекрещивающимися осями, а также для преобразования вращательного движения в поступательное и наоборот.

Достоинства зубчатых передач:

1. Постоянство передаточного отношения i .

2. Надежность и долговечность работы.

3. Компактность.

4. Большой диапазон передаваемых скоростей.

5. Небольшое давление на валы.

6. Высокий КПД.

7. Простота обслуживания.

Недостатки зубчатых передач:

1. Необходимость высокой точности изготовления и монтажа.

2. Шум при работе со значительными скоростями.

3. Невозможность бесступенчатого регулирования передаточного отно-

шения i .

2. Классификация зубчатых передач

Зубчатые передачи, применяемые в механических системах, разнообразны. Они используются как для понижения, так и для повышения угловой скорости.

Классификация конструкций зубчатых преобразователей группирует передачи по трем признакам:

1. По виду зацепления зубьев . В технических устройствах применяются передачи с внешним (рис. 5.1, а ), с внутренним (рис. 5.1, б ) и с реечным (рис. 5.1, в ) зацеплением.

Передачи с внешним зацеплением применяются для преобразования вращательного движения с изменением направления движения. Передаточное отношение колеблется в пределах –0,1 i –10. Внутреннее зацепление применяется в том случае, если требуется преобразовывать вращательное движение с сохранением направления. По сравнению с внешним зацеплением передача имеет меньшие габаритные размеры, бóльший коэффициент перекрытия и повышенную прочность, но более cложна в изготовлении. Реечное зацепление применяется при преобразовании вращательного движения в поступательное и обратно.

2 . По взаимному расположению осей валов различают передачи цилиндрическими колесами с параллельными осями валов (рис. 5.1, а), коническими колесами с пересекающимися осями (рис. 5.2), колесами со скрещивающимися осями (рис. 5.3). Передачи c коническими колесами обладают меньшим передаточным отношением (1/6 i 6), более сложны в изготовлении и эксплуатации, имеют дополнительные осевые нагрузки. Винтовые колеса работают с повышенным скольжением, быстрее изнашиваются, имеют малую нагрузочную способность. Эти передачи могут обеспечивать различные передаточные отношения при одинаковых диаметрах колес.

3 . По расположению зубьев относительно образующей обода колеса

различают передачи прямозубые (рис. 5.4, а ), косозубые (рис. 5.4, б ), шевронные (рис. 5.5) и с круговыми зубьями.

Косозубые передачи имеют боль-

шую плавность зацепления, меньше

технологически

равноценны

прямозубым, но в передаче возникают

дополнительные

нагрузки.

Сдвоенная косозубая со

встречными

наклонами зубьев (шевронная) переда-

ча имеет все преимущества косозубой

и уравновешенные осевые силы. Но

передача несколько сложнее в изготов-

лении и монтаже. Криволинейные

зубья чаще всего применяются в кони-

передачах

повышения

нагрузочной способности,

плавности

работы при высоких скоростях.

3. Геометрические параметры зубчатых колес

К основным геометрическим параметрам зубчатых колес (рис. 5.6) относятся: шаг зуба Р t , модуль m (m = P t /), число зубьев Z , диаметр d делительной окружности, высота h a делительной головки зуба, высота h f делительной ножки зуба, диаметры d a и d f окружностей вершин и впадин, ширина зубчатого венца b .

df 1

db 1

dw 1 (d1 )

da 1

df 2

dw 2 (d2 )

da 2

db 2

Диаметр делительной окружности d = mZ . Делительной окружностью зуб колеса делится на делительную головку и делительную ножку, соотношение размеров которых определяется относительным положением заготовки колеса и инструмента в процессе нарезания зубьев.

При нулевом смещении исходного контура высота делительной головки и ножки зуба колеса соответствует таковым у исходного контура, т. е.

ha = h a * m; hf = (h a * + c* ) m,

где h a * – коэффициент высоты головки зуба; c * – коэффициент радиального

Для колес с внешними зубьями диаметр окружности вершин

da = d + 2 ha = (Z + 2 h a * ) m.

Диаметр окружности впадин

df = d – 2 hf = (Z – 2 h a * – 2 c* ) m.

При m ≥ 1 мм h a * = 1, c * = 0,25, d a = (Z – 2,5)m .

Для колес с внутренними зубьями диаметры окружностей вершин и впадин следующие:

da = d – 2 ha = (Z – 2 h a * ) m;

df = d + 2 hf = (Z + 2 h a * + 2 c* ) m.

Для колес, нарезанных со смещением, диаметры вершин и впадин определяются с учетом величины коэффициента смещения по более сложным зависимостям.

Если два колеса, нарезанные без смещения, ввести в зацепление, то их делительные окружности будут касаться, т. е. совпадут с начальными окружностями. Угол зацепления при этом будет равен углу профиля исходного контура, т. е. начальные ножки и головки совпадут с делительными ножками и головками. Межосевое расстояние будет равняться делительному межосевому расстоянию, определяемому через диаметры делительных окружностей:

aw = a = (d1 + d2 )/2 = m(Z1 + Z2 )/2.

Для колес, нарезанных со смещением, имеется различие для начальных и делительных диаметров, т. е.

d w 1 ≠ d 1 ; d w 2 ≠ d 2 ; a w ≠ a ; αw = α.

4. Точность преобразования параметров

В процессе эксплуатации зубчатой передачи теоретически постоянное передаточное отношение претерпевает непрерывные изменения. Эти изменения вызываются неизбежными погрешностями изготовления размеров и формы зубьев. Проблема изготовления зубчатых зацеплений с малой чувствительностью к погрешностям решается в двух направлениях:

а) применение специальных видов профилей (например, часовое зацепление);

б) ограничение погрешностей изготовления.

В отличие от таких простых деталей, как валы и втулки, зубчатые колеса являются сложными деталями, и погрешности выполнения их отдельных элементов не только сказываются на сопряжении двух отдельных зубьев, но и оказывают влияние на динамические и прочностные характеристики зубчатой передачи в целом, а также на точность передачи и преобразования вращательного движения.

Погрешности зубчатых колес и передач в зависимости от их влияния на эксплуатационные показатели передачи можно разделить на четыре группы:

1) погрешности, влияющие на кинематическую точность, т. е. точность передачи и преобразования вращательного движения;

2) погрешности, влияющие на плавность работы зубчатой передачи;

3) погрешности пятна контакта зубьев;

4) погрешности, приводящие к изменению бокового зазора и влияющие на мертвый ход передачи.

В каждой из этих групп могут быть выделены комплексные погрешности, наиболее полно характеризующие данную группу, и поэлементные, частично характеризующие эксплуатационные показатели передачи.

Такое разделение погрешностей на группы положено в основу стандартов на допуски и отклонения зубчатых передач: ГОСТ 1643–81 и ГОСТ 9178–81.

Для оценки кинематической точности передачи, плавности вращения, характеристики контакта зубьев и мертвого хода в рассматриваемых стандартах установлено 12 степеней точности изготовления зубчатых колес

и передач. Степени точности в порядке убывания обозначаются числами 1–12. Степени точности 1 и 2 по ГОСТ 1643–81 для m > 1 мм и по ГОСТ 9178–81 для 0,1 < m < 1 являются перспективными, и для них в стандартах численные значения допусков нормируемых параметров не приводятся. Стандартом устанавливаются нормы кинематической точности, плавности, пятна контакта и бокового зазора, выраженные в допустимых погрешностях.

Допускается использование зубчатых колес и передач, группы погрешностей которых могут принадлежать к различным степеням точности. Однако ряд погрешностей, принадлежащих к различным группам по своему влиянию на точность передачи, взаимосвязаны, поэтому устанавливаются ограничения на комбинирование норм точности. Так, нормы плавности могут быть не более чем на две степени точнее или на одну степень грубее норм кинематической точности, а нормы контакта зубьев можно назначать по любым степеням, более точным, чем нормы плавности. Комбинирование норм точности позволяет проектировщику создавать наиболее экономичные передачи, выбирая при этом такие степени точности на отдельные показа-

тели, которые отвечают эксплуатационным требованиям, предъявляемым к данной передаче, не завышая затрат на изготовление передачи. Выбор степеней точности зависит от назначения, области применения колес и окружной скорости вращения зубьев.

Рассмотрим более подробно погрешности зубчатых колес и передач, влияющие на их качество.

5. Динамические соотношения в зубчатых зацеплениях

Зубчатые передачи преобразуют не только параметры движения, но и параметры нагрузки. В процессе преобразования механической энергии часть мощности P тр , подводимой к входу преобразователя, расходуется на преодоление трения качения и скольжения в кинематических парах зубчатых колес. В результате мощность на выходе уменьшается. Для оценки потери

мощности используется понятие коэффициента полезного действия (КПД), определяемого как отношение мощности на выходе преобразователя к мощности, подводимой к его входу, т. е.

η = P вых /P вх .

Если зубчатая передача преобразует вращательное движение, то соответственно мощности на входе и выходе можно определить как

Обозначим ωвых /ωвх через i , а величину T вых /T вх через i м , которое назовем передаточным отношением моментов. Тогда выражение (5.3) примет вид

η = i м .

Величина η колеблется в пределах 0,94–0,96 и зависит от типа передачи и передаваемой нагрузки.

Для зубчатой цилиндрической передачи КПД можно определить из зависимости

η = 1 – cf π(1/Z 1 + 1/Z 2 ),

где с – поправочный коэффициент, учитывающий уменьшение КПД с уменьшением передаваемой мощности;

20Т вых 292mZ 2

20Т вых 17,4mZ 2

где Т вых – момент на выходе, H мм; f – коэффициент трения между зубьями. Для определения действительных усилий на зубья передачи рассмот-

рим процесс преобразования нагрузки (рис. 5.7). Пусть движущий входной момент T 1 приложен к ведущему зубчатому колесу 1 с диаметром начальной окружности d w l , а момент сопротивления T 2 ведомого колеса 2 направлен в сторону, противоположную вращению колеса. В эвольвентном зубчатом зацеплении точка контакта находится всегда на линии, являющейся общей нормалью к соприкасаемым профилям. Следовательно, сила давления зуба F ведущего колеса на зуб ведомого будет направлена по нормали. Перенесем силу по линии действия в полюс зацепления P и разложим ее на две составляющие.

Ft ’

Ft ’

Касательная составляющая F t называется

окружной силой. Она

совершает полезную работу, преодолевая момент сопротивления T и приводя в движение колеса. Ее величину можно вычислить по формуле

F t = 2T /d w .

Составляющая по вертикали называется радиальной силой и обозначается F r . Эта сила работы не совершает, она только создает дополнительную нагрузку на валы и опоры передачи.

При определении величины обеих сил можно пренебречь силами трения между зубьями. В этом случае между полным усилием давления зубьев и его составляющими существуют следующие зависимости:

F n = F t /(cos α cos);

F r = F t tg α/ cos ,

где α – угол зацепления.

Зацепление цилиндрических прямозубых колес имеет ряд существенных динамических недостатков: ограниченные значения коэффициента перекрытия, значительный шум и удары при высоких скоростях. Для уменьшения габаритов передачи и уменьшения плавности работы часто прямозубое зацепление заменяют косозубым, боковые профили зубьев которого представляют собой эвольвентные винтовые поверхности.

В косозубых передачах полное усилие F направлено перпендикулярно зубу. Разложим эту силу на две составляющие: F t – окружное усилие колеса и F a – осевая сила, направленная вдоль геометрической оси колеса;

F a = F t tg β,

где – угол наклона зуба.

Таким образом, в косозубом зацеплении в отличие от прямозубого действуют три взаимно перпендикулярные силы F a , F r , F t , из которых только F t совершает полезную работу.

6. Конструкция колес. Материалы и допускаемые напряжения

Конструкция колес. При изучении принципов конструирования зубчатых передач основной целью является усвоение методики определения формы и основных параметров колес по условиям работоспособности и эксплуатации. Достижение указанной цели возможно при решении следующих задач:

а) выбор оптимальных материалов колес и определение допускаемых механических характеристик;

б) расчет размеров колес по условиям контактной и изгибной прочности;

в) разработка конструкции зубчатых колес.

Зубчатые передачи являются типовыми преобразователями, для которых разработано достаточно много обоснованных конструктивных оптимальных вариантов. Обобщающая схема конструкции зубчатого колеса может быть представлена как сочетание трех основных конструктивных элементов: зубчатого венца, ступицы и центрального диска (рис. 5.9). Форму и размеры зубчатого колеса определяют в зависимости от числа зубьев, модуля, диаметра вала, а также от материала и технологии изготовления колес.

На рис. 5.8 показаны примеры конструкций зубчатых колес механизмов. Размеры колес рекомендуется брать в соответствии с указаниями ГОСТ 13733–77.