Храповой механизм. Расчет храпового механизма. Работа храпового механизма. Чем секатор с храповым механизмом лучше традиционного? Колесо с храповым механизмом

Состоящий из храпового (зубчатого) колеса с косыми зубьями и рычага с укреплённым на нём промежуточным звеном (собачкой). Храповый механизм преобразует возвратно-вращательное движение рычага в прерывистое вращение храпового колеса. При вращательном (рабочем) движении рычага собачка под действием пружины свободным концом упирается в зуб колеса и поворачивает его на некоторый угол. При возвратном (холостом) ходе рычага собачка свободно скользит по косым кромкам зубьев, пока не остановится. Чтобы во время холостого хода рычага не вращалось в обратную сторону, имеется дополнительная стопорная собачка. Во время следующего рабочего движения рычага собачка снова поворачивает колесо. Таким образом вращательные движения рычага преобразуются в периодическое вращение колеса только в одном направлении. Чтобы повернуть колесо в обратную сторону, надо удержать обе собачки от контакта с зубьями. Храповый механизм применяют в качестве задерживающего устройства – напр., в грузоподъёмных машинах (зубчатое колесо соединено с барабаном лебёдки, и собачка удерживает барабан от обратного раскручивания под тяжестью поднимаемого груза). Храповый механизм используется в часах с пружинным заводом (при заводе часов он предотвращает самопроизвольное раскручивание заводной пружины).

1 – храповое колесо; 2 – собачка; 3 – рычаг; 4 – стопорная собачка

Энциклопедия «Техника». - М.: Росмэн . 2006 .


Смотреть что такое "храповый механизм" в других словарях:

    Храповой механизм, состоящий из собачки (a) и зубчатого колеса (b) Храповой механизм (храповик) зубчатый механизм прерывистого движения, предназначенный для преобразования возвратно вращательного движения в прерывистое вращательное движение в… … Википедия

    I Часы прибор для измерения текущего времени (в секундах, минутах, часах). Ч. относятся к категории «приборов времени», куда входят также Хронометр, Секундомер, Таймер, Реле времени и комбинированные приборы, например Ч. с секундомером.… … Большая советская энциклопедия

    Milkor MGL - 40мм гранатомет Milkor MGL Mk.1 (Южная Африка) гранатомет Milkor MGL Mk.1 гранатомет Milkor MGL 140 с удлиненным барабаном и направляющими типа Picatinny на цевье гранатомет Milkor MGL 140 в действии Характеристики Разработка… … Энциклопедия стрелкового оружия

Ки. Храповой механизм - устройство, допускающее вращение оси в одном направлении и исключающее вращение этой же оси в противоположном направлении. Он состоит из храпового колеса и собачки. Собачка 1 обычно прижата к колесу пружиной 2 (рис. 1). Реже используют храповые механизмы, в которых собачка взаимодействует с поступательно перемещающейся рейкой. Храповые колеса и собачки изготовляют из сталей 35, 50, У10А, 15Х, 20Х, 25ХГСА. При значительных нагрузках, а также для уменьшения износа их либо подвергают объемной закалке, либо цементируют, а затем закаливают. В приборах храповые колеса изготовляют также из латуней ЛК80-Э и ЛС63-3 и бронзы Бр.КМцЗ-1. Иногда и собачки изготовляют из латуни. Используют также сплавы алюминия.

Пружины храпового механизма создают момент, прижимающий собачку к храповому колесу. Однако этот момент не предназначен для преодоления сил и моментов, которые могут действовать на собачку от храпового колеса. Усилие пружины оказывается для этой цели недостаточным. Оно лишь вводит собачку в зацепление с храповым колесом. Поэтому положение оси С собачки выбирают с таким расчетом, чтобы окружная сила F и вызываемая ею сила трения обеспечивали появление равнодействующей силы F n , момент которой на плече Са прижимал бы собачку к храповому колесу, а не выводил ее из зацепления (рис. 1). Это достигается в том случае, если угол a положения оси собачки больше угла j трения. Для обеспечения этого неравенства необходимо удалить ось С собачки от оси храпового колеса (см. собачку, показанную выше колеса). Однако при этом следует опасаться переброса собачки на другую сторону храпового колеса, особенно после некоторого износа собачки. В таких случаях храповой механизм может срываться. Поэтому недопустимо и слишком большое удаление оси С собачки от оси храпового колеса. У собачки, показанной слева от

колеса, для надежного функционирования храпового механизма также необходимо выполнять неравенство > что может быть обеспечено, когда ось, наоборот, находится ближе к оси колеса, а собачка сделана достаточно длинной. При этом момент силы F n прижимает собачку к храповому колесу. Соответствующее направление нормальной силы F n можно обеспечить поднутрением передней грани зубьев храпового колеса на угол a. Тогда ось собачки может располагаться на касательной к средней окружности зубьев храпового колеса (рис. 2). Для обеспечения прижатия собачки к зубьям храпового колеса в этом случае необходимо, чтобы угол поднутрения был больше угла трения. Часто a выбирается равным 10°. У этой конструкции при малом окружном шаге зубьев зуб храпового колеса получается ослабленным.

где [p]- допускаемое давление на единицу ширины зуба храпового колеса; определяется по справочнику; y = b/т, b - ширина колеса.

На рис. 3 показана конструкция храповика часового механизма. Вместо храпового колеса использовано обычное колесо с зубьями часового профиля. Это упростило конструкцию, так как сократилось число колес в механизме. Собачка 1 имеет несколько выступов и удерживается на оси винтом 4. На рис. 3, а показано положение собачки относительно колеса 2 при подзаводке часов. Момент М зав отводит собачку, которая одним из своих выступов непрерывно прижимается под действием пружины 3 к зубьям колеса 2, ропуская их. Выступ собачки захватил конец Д пружины 3, деформируя последнюю. Конец Г пружины закреплен неподвижно. На рис. 3, б показано стопорящее положение собачки, когда она удерживает колесо 2. Зуб колеса упирается в один из выступов собачки. При переходе из положения а в положение б храповое колесо немного поворачивается, благодаря чему ослабляется напряжение заводной пружины после ее тугого завода. Это способствует увеличению срока службы заводной пружины и стало возможным благодаря применению собачки с несколькими выступами.

Храповые механизмы могут обеспечивать преобразование вращательного движения в колебательное или наоборот. На рис. 4 показана конструкция храпового механизма электрических часов, в которой толкающие собачки 1 и 3 преобразуют качания якоря 2 в прерывисто-вращательное движение храпового колеса 4. При движении якоря как в прямом, так и в противоположном направлениях собачки попеременно захватывают и толкают зубья храпового колеса (рис. 4, а, 6). На рис. 5 даны условные обозначения храповых механизмов для схем (ГОСТ 2.770-68): а - односторонний храповой механизм с наружным зацеплением; б - двусторонний храповой механизм с наружным зацеплением; в - односторонний храповой механизм с внутренним зацеплением.


Кулисный механизм (рис. 6, а) наиболее часто применяют для преобразования вращательного движения кривошипа 1 в качательное движение кулисы 3. Камень кулисы 2 перемещается вдоль нее по направляющим. Кулисные механизмы могут быть использованы также для преобразования равномерного вращательного движения в неравномерное вращательное движение при а < r (рис. 6, б). Кулисы с камнем применяют также в тангенсных , синусных и других механизмах для замены высших кинематических пар низшими.

Для прерывистого перемещения рабочих органов станков используют механизмы периодического действия, которые за часть полного периода (цикла) своей работы сообщают исполнительному механизму прерывистое движение, повторяющееся в каждом цикле. Такие устройства необходимы для подачи стола на строгальных и долбежных станках, поворота многоинструментальных головок, поперечной подачи шлифовальной бабки, поворота нарезаемого зубчатого колеса на следующий зуб и т. д. Во всех указанных случаях рабочий орган станка совершает в определенный момент прерывистое перемещение. Обычно для периодических прерывистых движений узлов и деталей станков применяются следующие механизмы: храповые, кулачковые, мальтийские, с муфтами обгона, электрического действия, гидравлического и пневматического действий.

Храповые зубчатые механизмы подразделяются на механизмы с наружным зацеплением (односторонние и двусторонние) и механизмы с торцовым зацеплением. Храповые механизмы применяются для получения периодических (прерывистых) движений подач в строгальных и долбежных станках, поворотов револьверных головок, цикличных движений в автоматах. Они удобны в тех случаях, когда периодические перемещения строго ограничены временем перебега или обратного хода резца.

Основные схемы храповых механизмов показаны на рис. 39. Ведущим звеном является собачка 1, совершающая возвратно-качательное движение, а ведомым - храповое колесо 2, которое может быть с наружным (рис. 39, а), внутренним (рис. 39, б) и торцовым (рис. 39, в) зацеплениям и. При каждом цикле качания собачка поворачивает храповое колесо на заданное число зубьев и отходит в исходное положение, проскальзывая по зубьям храповика.

В механизме с наружным храповым колесом (см. рис. 39, а) при равномерном вращении кривошипа К, связанного с ним шатуна Ш Н рычаг Р Г получает непрерывное качательное движение относительно точки 0 2 . С рычагом Р Г связана собачка 1, упирающаяся в зубья колеса z 2 . П ри качании коромысла по стрелке, а-б (в сторону б) собачка приподнимается, скользит по спинкам зубьев и колесо не поворачивается. Принцип действия других конструкций аналогичен.

На рис. 39, г показан храповой механизм с поршневым приводом, содержащим цилиндр Ц, поршень П и шатун Ш Н. Храповые колеса и собачки изготовляются из сталей 15Х, 20Х, которые цементируются и закаливаются.

Основные размеры храповых колес (мм):

где D - наружный диаметр храпового колеса, мм; m - модуль, мм; z - число зубьев храпового колеса; Р - шаг, мм; α - угол поворота храпового колеса, градус; α 1 - число зубьев, захватываемых собачкой.

Кулачковые механизмы по виду движения разделяются на механизмы радиального и аксиального движения.

Наибольшее распространение получили плоские кулачковые механизмы, которыми легко осуществлять разнообразные функции управления при сравнительной компактности и несложной конструкции. Через плоские кулачковые механизмы преобразуется вращательное движение кулачка в поступательное движение толкателя. В механизмах с цилиндрическими кулачками барабанного типа (рис. 40, а) или торцового типа (рис. 40, б) ведущим звеном является кулачок 1 с пазом, по которому перемещается ролик толкателя 2. Такие механизмы применяются в станках-автоматах и полуавтоматах для осуществления автоматического цикла работы. Максимальная длина хода (по кривой кулачка) для барабанных кулачков составляет до 300 мм, для дисковых плоских кулачков 100-120 мм.

Принцип работы дискового кулачка (рис. 40, в) торцового типа состоит в следующем. Дисковый кулачок 1 равномерно вращается от привода вокруг оси О 1 . На поверхность профильного кулачка опирается ролик 2 с рычажным механизмом, заканчивающимся ползуном С, связанным с рабочим органом Р 0 . При равномерном вращении ролик 2 будет качаться соответственно профилю кулачка и через рычажный механизм, и ползун С передает прямолинейное возвратно-поступательное движение рабочему органу Р 0 . Материалами для кулачков обычно служат стали 50 и 40Х с поверхностной закалкой, при нагреве токами высокой частоты (ТВЧ) и закалке до твердости НRС 52-58.

Мальтийские механизмы . На рис. 41, а изображена схема мальтийского механизма, где ведущим звеном является вал I с кривошипом 1, а ведомым шестипазовый диск 2 - мальтийский крест, жестко закрепленный на валу II. При каждом обороте кривошипного вала I палец кривошипа 1 входит в один из пазов мальтийского креста и сообщает ему прерывистый поворот на угол 2α = 360°/z, где z - число пазов креста. Для плавного поворота креста, без жестких ударов в начале и конце поворота, должно удовлетворяться условие α + β = 90°, где β - половина центрального угла пальца креста.

На рис. 41, б изображен мальтийский механизм, состоящий из кривошипа и креста, его передаточное отношение зависит от числа пазов креста, которых может быть от 3 до 8:

В четырехпозиционном мальтийском механизме при равномерном вращении кривошипа 2, закрепленный на нем ролик 1 в определенный момент входит в один из четырех пазов мальтийского креста 4 и поворачивает его на 90°. За каждый последующий полный оборот кривошипа 2 вал с мальтийским крестом сделает только 1/4 оборота. Диск 3, жестко связанный с кривошипом, служит для фиксации положения креста в каждой из его четырех позиций.

Фиксирующие устройства. Многие перемещаемые узлы и детали станков при их установке в рабочее положение должны точно координироваться относительно других узлов и деталей станка. Для этого применяют фиксаторы. Круглый конический фиксатор (рис. 42, а) дает точную фиксацию, так как зазор между коническими поверхностями штифта 1 и втулки 2 отсутствует. Плоский конический фиксатор (рис. 42,6) обеспечивает большую жесткость и точность фиксации. Клин 1 подтягивается винтом 2 для устранения зазора между корпусом 3 и фиксатором 4. Фиксаторы применяют, например, для фиксации в рабочее положение поворотной револьверной головки на токарно-револьверном станке или автомате, для обеспечения соосности осей шпинделя и соответствующего гнезда револьверной головки, для установки режущего инструмента. Поворотный шпиндельный блок многорезцового токарного автомата должен точно координироваться относительно режущих инструментов так, чтобы прутковые и инструментальные шпиндели располагались соосно. Фиксаторы также необходимы для поворотных столов, делительных и других устройств.

Механизмы обгона являются разновидностью дифференциальных механизмов. Их применяют в тех случаях, когда необходимо передавать два вращательных движения от двух независимых источников на один вал, а также используют для обеспечения медленных рабочих и быстрых холостых движений. Механизмы обгона конструируют в виде храповых, роликовых или шариковых муфт.

Колесо 2 храповой муфты обгона (рис. 43, а) получает медленное вращение РХ (рабочий ход) против часовой стрелки. Оно свободно сидит на валу 4 и имеет на пальце собачку 3. Храповое колесо 1 при помощи шпонки жестко посажено на вал, который может быстро вращаться в том же направлении со скоростью XX (холостой ход). При рабочем ходе колесо 2 через собачку 3 вращает храповое колесо 1, ас ним и вал 4. При включении холостого хода от отдельного электродвигателя или другого устройства вал 4 получает быстрое вращение. В этом случае храповик будет обгонять собачку, и тогда медленное движение от колеса 2 на вал передаваться не будет.

Колесо 2 роликовой муфты обгона (рис. 43, б) свободно сидит на диске 3 с угловыми вырезами, в которые помещены ролики 1.

Контакт роликов с кольцом осуществляется подпружиненными пальцами 4. Диск получает быстрое, а кольцо медленное движение в одном направлении. Кольцо 2 непрерывно медленно вращается и увлекает за собой ролики 1, которые, перекатываясь, заклиниваются в угловом пазу между кольцом и диском 3, который получает таким образом медленное вращение. При этом можно сообщить быстрое вращение валу, несущему диск 3, который, обгоняя кольцо 2, расклинивает ролики 1.

Муфты обгона используют в токарных, многорезцовых, сверлильных и других станках для передачи рабочих и ускоренных движений, а также для ручной подачи и других целей.

В различных машинах для их нормального функционирования используется не только непрерывное, но и прерывистое вращательное движение. Для того чтобы его осуществлять, используются специализированные механизмы , называемые храповыми .

В технике храповыми механизмами принято называть такие кинематические устройства, которые используются для того, чтобы преобразовывать возвратно-вращательное движение в движение прерывистое вращательное, имеющее одно направление. Отличительной особенностью храповых механизмов является то, что они позволяют производить изменение величины периодических перемещений рабочих частей станков и машин различного назначения, причём в весьма широком диапазоне и достаточно тонко.

Храповой механизм можно охарактеризовать, как устройство которое периодически создаёт препятствие воздействию силы на механизм и снова создаёт условия для его движения. Кроме того, их применяют с целью устранения возможности перемещения каких-либо звеньев машин и механизмов в одном направлении. Еще одно назначение храповых механизмов состоит в том, чтобы давать связанным между собой звеньям возможность свободно поворачиваться в одном направлении. Все храповые механизмы подразделяются на зубчатые и фрикционные.

Зубчатые храповые механизмы

Основными элементами зубчатых храповых механизмов являются зубчатая рейка или зубчатое храповое колесо и ползун или коромысло, на которых закреплена так называемая «собачка ». На храповом колесе могут располагаться внутренние, наружные, а также торцевые храповые зубья . Что касается «собачек », то их в большинстве случаев делают поворотными. К колесам они прижимаются или под влиянием собственного веса, или под действием специальных пружин.

Нередко бывают ситуации, когда нужно обеспечить вращение храповика как в одну, так и в другую сторону. Для обеспечения такого функционирования устройства его собачка делается перекидной, а зубья используются прямоугольной конфигурации. Для того чтобы изменит направление вращения храповика , необходимо переключить «собачку » из одного положения в другое.

Фрикционные храповые механизмы в современной технике получили весьма широкое распространение. Они подразделяются на колодочные, кулачковые и роликовые.

Чаще всего фрикционные храповые механизмы используются тогда, когда нужно обеспечить надежное сцепление различных элементов при значительных скоростях, причем в любом их угловом положении друг относительно друга. Движение в одном определенном направлении в таких механизмах выполняется за счет того, что при заклинивании промежуточных звеньев фрикционных обойм возникает большая сила трения.

Применение храповых механизмов

Сфера применения храповых механизмов различных типов и конструкций весьма широка. Чаще всего их используют в самом разнообразном станочном оборудовании. К примеру, без храповых механизмов с наружным храповым колесом не обходится практически ни один современный поперечно-строгальный станок. В продольно-строгальном оборудовании обычно используются механизмы с торцевыми храповыми муфтами . Их устанавливают в приводах подач. В конструкции некоторых круглошлифовальных станков применяются храповые механизмы с поршневыми приводами. Они монтируются в системах радиальных подач.

Помимо станкостроения храповые механизмы используются также в приборостроении, автомобилестроении, авиастроении. Их часто можно встретить в различных отсчетных устройствах, заводных механизмах, стартерах, лебедках, домкратах и т.п.

И его частей: храпового колеса и собачки.

Расчет храпового механизма

Наиболее опасным для элементов останова является положение, когда собачка упирается в вершину зуба храпового колеса (рис. 1, б). Так как зацепление зубьев с собачкой происходит с некоторым ударом, то кромки зуба колеса и собачки сминаются. Прочность кромок определяют по уравнению:

где P – окружная сила, H; b – ширина колеса, см; [q] – допускаемое линейное давление с учетом динамического характера нагружения, Н/см (значения [q] для некоторых материалов приведены в таблице 1).

Храповой механизм

Рис. 1: а - схема останова; б - расчет собачки

Окружную силу определяют из уравнения:

где D - внешний диаметр храпового колеса; z - число зубьев храпового колеса; m - модуль зацепления храпового колеса; Mк - крутящий момент, действующий на валу храпового колеса.

Параметры для расчета храпового соединения


Табл. 1: Примечание. Значения [q] соответствуют механизмам для 1, 2 и 3-й групп режимов работы. Для более напряженных режимов эти значения должны быть не ниже 25-30%.

Расчет храпового колеса

Соотношение между шириной зуба b и модулем m определяется коэффициентом ψ=b/m, значения которого даны в таблице 1. Бόльшие значения коэффициента ψ принимают для , работающих со значительными ударными нагрузками. Ширину собачки при нимают на 2-4 мм шире зуба храпового колеса, чтобы компенсировать возможные неточности монтажа. Используя уравнения, приведенные выше, получаем выражение для модуля колеса:

Если число зубьев неизвестно, а известен диаметр храпового колеса, то удобнее пользоваться выражением:

При модуле храпового колеса m≥6 мм можно ограничится проверкой зуба по изгибу. Плоскость излома зуба (рис. 1, б) отстоит на расстоянии h = m от вершины зуба. Высоту расчетного сечения зуба храпового колеса с внешним зацеплением принимают a = 1,5m. Тогда момент, изгибающий зуб:

Момент сопротивления изгибу при рассмотрении зуба как балки, закрепленной с одного конца:

Напряжение от изгиба должно удовлетворять неравенству:

Принимая допускаемые напряжения [σ и ] = σ в /n для чугунов и [σ и ] = σ т /n для сталей, где значения n указаны в таблице 1, получаем выражение для модуля:

При внутреннем зацеплении зубья храпового колеса значительно прочнее, поскольку в этом случае высота расчетного сечения зуба a = 3m. Модуль определяют из выражения:

Расчет собачки храпового механизма

Собачку изготовляют обычно из стали 40Х, термообработанной (см. ) до твердости не ниже HRC 48-50. Чтобы обеспечить надежную работу соединений, собачка прижимается к храповому колесу пружиной (рис. 2, а, б) или силой тяжести специального груза (рис. 2, в). Ось вращения собачки устанавливают в таком месте, чтобы угол между прямыми, проведенными от оси колеса и оси собачки в точку контакта собачки с колесом, был близок к 90°

Работа храпового механизма

Поверхность зуба колеса, упирающуюся в собачку, делают плоской. При вращении храпового колеса в направлении, соответствующем подъему груза, собачка свободно скользит по наклонным поверхностям зубьев.

Конструкции собачек с принудительным включением


Рис. 2

Если направление вращения колеса изменяется на противоположное, то собачка, упираясь в верхнюю кромку зуба колеса, соскальзывает во впадину и прижимается к рабочей грани зуба всей торцевой поверхностью, создавая необходимый упор. При этом на собачку от окружной силы P будут действовать сила нормального давления N = Pcosα и сила R = Psinα, направленная вдоль рабочей грани зуба и стремящаяся сдвинуть собачку к основанию зуба (рис. 1, б). Кроме того, на собачку действуют сила трения fN вдоль рабочей грани и момент трения Pf ı d/2 в опоре O ı , препятствующие входу собачки в зацепление (здесь f ı – коэффициент трения между собачкой и ее осью, имеющей диаметр d). Приведенная к плоскости рабочей грани зуба сила трения от момента трения на оси собачки выражается уравнением:

Если пренебречь влиянием силы тяжести собачки и силы пружины, способствующих созданию зацепления, то для обеспечения входа собачки в зацепление с зубом должно быть удовлетворено неравенство:

откуда после преобразований получаем:

то есть беспрепятственное движение собачки к основанию зуба колеса будет обеспечено, если угол α отклонения передней грани зуба колеса будет больше приведенного угла трения собачки по зубу храпового колеса с учетом коэффициентов трения f и f ı и геометрии зацепления. Нормально на построение профиля зубьев храпового колеса при наружном и внутреннем зацеплении предусмотрен угол α = 20°, что учитывает и влияние трения в опоре O ı и возможное загрязнение, и повреждение контактных поверхностей зуба колеса и собачки.

Собачка воспринимает сжимающие, растягивающие и изгибающие нагрузки. Расчет ведут при положении собачки, упертой концом в кромку зуба колеса (рис. 1, б). Так, при сжатой собачке напряжение в опасном сечении:

где В – ширина собачки; [σ и ] с =σ т /n – допускаемое напряжение; n=5 – запас прочности.