Измерение напряжения вч вольтметром своими руками. Аналоговый вч вольтметр. Принципиальная схема ВЧ милливольтметра

В. Костычев, UN8CB.

г. Петропавловск.

Этот простой прибор позволяет измерять эффективное (действующее) значение напряжения и мощности ВЧ колебаний как синусоидальных, так и модулированных, а также, при усовершенствовании прибора, и пиковую мощность. Основой этого прибора является простой диодный высокочастотный вольтметр, какие используются в КСВ-метрах, а также в импортных приборах SX-100, SX-200. Такой подобный диодный вольтметр используется и в приборе ВВ-10, на диод которого подаётся ВЧ напряжение через трансформатор тока (Рис.1).

(Детали синего цвета устанавливаются дополнительно для пикового индикатора, при усовершенствовании прибора). При работе прибора в режиме поглощающего измерителя мощности к разъёму «АНТ» переключателем S1 подключается нагрузочный резистор Rн. При работе в режиме измерителя проходящей мощности Rн отключается и подключается антенна. Переключателем S2 устанавливается предел измерения 100 Вт или 500 Вт.

Для трансформатора тока Т1 используется кольцо 1000НН-2000НН диаметром 12-16 мм, обмотка проводом ПЭЛ 0,5; 4 - 5 витков. Через кольцо трансформатора Т1 пропускается достаточно толстый провод в изоляции, соединяющий разъёмы «АНТ» и «ПЕР», расположенные около 5 см друг от друга на задней стенке прибора. Микроамперметр РА - типа М2001 с током полного отклонения 100мкА. Нагрузочный резистор состоит из 30 резисторов МЛТ- 1.5 к, мощностью 2 Вт (общее сопротивление 50 Ом). Общая мощность Rн - 60 Вт. Резисторы распаиваются между двумя платами из фольгированного стеклотекстолита. (Рис.2).

Монтаж деталей прибора навесной, с использованием опорных точек, в корпусе подходящего размера

Шкала прибора градуируется в вольтах и в ваттах. Для этого параллельно Rн подключается ВЧ вольтметр (типа В7-15). К разъёму «ПЕР» подключается передатчик, переключатель S2 - в положение 100 Вт. Включается режим передачи несущей на частоте 14 МГц, плавно увеличивая выходную мощность установить ВЧ напряжение на Rн равное 70,7 В, что будет соответствовать мощности 100 Вт. Резистором R3 устанавливается стрелка микроамперметра на последнюю отметку шкалы - 100 мкА. Уменьшая выходную мощность передатчика, определяем показания микроамперметра для других значений мощности, исходя из выражения: Рэфф = (Uэфф)2/ Rн. Результат заносим в градуировочную таблицу 1.

Таблица 1.

Для градуировки шкалы на пределе 500 Вт переключить S2 в положение 500 Вт, установить мощность передатчика 100 Вт и резистором R4 зафиксировать стрелку микроамперметра на отметке 44.5 мкА. Затем, уменьшая мощность передатчика, а потом, увеличивая, проградуировать остальную часть шкалы для этого предела. Эту таблицу можно использовать в дальнейшем при работе с прибором. Можно её наклеить на верхнюю крышку.

При работе с прибором нужно помнить, что Rн рассчитан на мощность 60 Вт, поэтому при больших мощностях время измерения должно быть не долгим, с перерывами.

В инструкции по эксплуатации приборов SX-100, SX-200 заявлено, что эти приборы не способны показывать все 100% пиковой мощности, а только 70% - 90% . Также существенным недостатком приборов SX-100, SX-200 является отсутствие более-менее длительной фиксации показаний при измерении обычной разговорной пиковой мощности, что затрудняет её отсчёт. В приборе ВВ-10 эти недостатки устраняются, если использовать пиковый индикатор в виде дополнительной приставки к ВВ-10 на операционном усилителе, например, какой предлагает DJ7AW (Радио №7, 2011, стр.63). Такой пиковый индикатор был испытан и показал неплохие результаты. Рис.3.

Для его подключения в схеме на рис.1 необходимо внести некоторые изменения. В разрыв между точками «а-а» включается переключатель S3 и соединяется, как показано на схеме рис.1 синим цветом. В положении 1 переключателя S3 измеряется эффективная мощность, а в положении 2 - пиковая мощность. В режиме измерения пиковой мощности постоянное напряжение с выпрямителя вольтметра-ваттметра поступает через операционный усилитель DA1.1 на пиковый детектор VD1,R4,C2. Постоянной времени этого детектора (около 6,8 с) вполне достаточно для регистрации обычной разговорной пиковой мощности. Повторитель на операционном усилителе DA1.2 исключает шунтирование нагрузки пикового детектора, что позволяет увеличить время фиксации показаний измерительного прибора. Пиковый индикатор собирается на платке размером 45х38 мм, на пятачках навесным монтажом, рис. 4.

Синим цветом обозначен отрезок провода в изоляции (вместо дорожки), пропущенный под панелькой для микросхемы, припаянной к контактным площадкам. Конденсатор С2 - неполярный. Подключается плата к точкам А и Б схемы рис.1.Одно плохо, для питания этой схемы нужен источник питания 12В.

В журнале не приводится методика настройки и градуировки этого пикового индикатора. Я это делал из соображений, что в линейном режиме эффективная мощность и пиковая мощность синусоидального колебания (несущей) равны, а пиковая мощность модулированного сигнала при произнесении перед микрофоном умеренного звука «а-а-а» равна приблизительно эффективной мощности несущей. Уровень напряжения, подаваемый с детектора на операционник DA1, должен быть таким, чтобы он не входил в режим насыщения. Для этого движок R1 устанавливался приблизительно на 1/3 его сопротивления от «земли». Калибровка при измерении пиковой мощности модулированного сигнала (S3 в положении 2) производится резистором R6 (при выходной мощности передатчика около 100 Вт) в режиме длительного «а-а-а», которым показания микроамперметра устанавливаются такими же, как и при измерении эффективной мощности в режиме несущей (S3 в положении 1). Тогда при измерении пиковой мощности модулированных колебаний должен получаться более-менее реальный результат. У прибора ВВ-10 этот показатель около 95%.

Предлагаемый прибор предназначен для измерения ВЧ и НЧ напряжения в любительской РЭА.
Диапазон измеряемых напряжений 10мв-10в
Частотный диапазон 1кгц- 500…800 мгц
Разрешающая способность 10мв при напряжении более 20мв
Входное сопротивление – около 80ком
Входная емкость 2-5 пф
Вольтметр позволяет измерять напряжение в относительно "высокоомных" точках схемы (кварц, ПАВ резонатор, колебательный контур в том числе и в сверхрегенераторе) без существенного нарушения работы устройства.
Устройство прибора типовое: детекторная головка на германиевом диоде Д18 (Д20, ГД507) которая измеряет амплитуду напряжения, высокоомный повторитель на ОУ MCP6002, микроконтроллер с встроенным АЦП и LED индикатор. Для коррекции нелинейности диода в зоне малых напряжение (0-100мв) микроконтроллер производит пересчет по таблице.
Для калибровки прибор имеет встроенный генератор симметричных прямоугольных импульсов с частотой около 5кгц с размахом практически равным напряжению питания микросхем (4.95-5.05в) на втором ОУ микросхемы MCP6002, вывод 7. Это позволяет для настройки и калибровки обойтись обычным мультиметром. Для этого измеряем напряжение питания U1=5в, тогда размах прямоугольных импульсов на выходе ОУ составит те же U1, если убрать постоянную составляющую (а это делает конденсатор на входе детектора) то получим меандр с амплитудой 0,5*U1. Поскольку детектор амплитудный, его показания для меандра и синусоиды с той же амплитудой будут одинаковы. Поэтому показания прибора для синусоидального напряжении должны быть 0,707 от амплитуды, то есть 0,707*0,5*U1 что в моем случае составило 1,74в. Требуемые показания получают подбором резисторов R16 и R7 при настройке. Симметричость напряжения колибратора проверяется так же мультиметром, постоянное напряжение на выводе 7 микросхемы MCP6002 должно составлять ровно 50% от напряжения питания 5в, это обеспечивается применением RAIL-TO-RAIL ОУ с большим входным сопротивлением и малым напряжением сдвига.
Конструктивно прибор выполнен в виде щупа.
Схема вольтметра (не показаны ограничительные резисторы 240 ом в линиях подключения сегментов индикатора, в печатной плате они стоят). Индикаторы- с общим катодом.

Фото печатной платы:

Входная часть

На всякий случай фьюзы конфигурации МК, некоторые программаторы установки из файла не полностью выполняют

Архив с файлами схемы, печатной платы, исходниками программы и прошивкой, таблицей коррекции показаний

Милливольтметры с линейной шкалой, описанные в литературе, традиционно выполняют по схеме с диодным выпрямителем, включенным в цепь отрицательной обратной связи усилителя переменного тока. Такие устройства довольно сложны, требуют применения дефицитных деталей, кроме того, к ним предъявляются достаточно жесткие конструктивные требования.

В то же время существуют весьма простые милливольтметры с нелинейной шкалой, где выпрямитель собран в выносном щупе, а в основной части используется простой усилитель постоянного тока (УПТ). По такому принципу построен прибор, описание которого предлагалось в журнале «Радио», 1984, № 8, с. 57. Эти приборы широкополосны, обладают высоким входным сопротивлением и малой входной емкостью, конструктивно просты. Но показания прибора условны, а истинное значение напряжения находят либо по градуировочным таблицам, либо по графикам. При использовании узла, предлагаемого автором, шкала такого милливольтметра становится линейной.

Рис.1

На рис. 1 изображена упрощенная схема прибора. Измеряемое высокочастотное напряжение выпрямляется диодом VD1 в выносном щупе и через резистор R1 поступает на вход УПТ А1. Из-за наличия в цепи отрицательной обратной связи диода VD2 усиление УПТ при малых напряжениях на входе увеличивается. Благодаря этому уменьшение выпрямленного диодом VD1 напряжения компенсируется и шкала прибора линеаризируется.

Рис.2

Милливольтметр, изготовленный автором, позволяет измерять напряжение в интервале 2,5 мВ... 25 В на 11 поддиапазонах. Полоса рабочих частот 100 Гц...75 МГц. Погрешность измерения не превышает 5 %.
Принципиальная схема прибора приведена на рис.2. Линеаризирующий каскад, выполненный на операционном усилителе DA1, работает на поддиапазонах «О...12,5 мВ», «0...25 мВ», «0...50 мВ» «0...125 мВ», «0...250 мВ», «О...500 мВ», «0...1,25 В». На остальных поддиапазонах амплитудная характеристика диода VD1 близка к линейной, поэтому вход оконечного каскада (на микросхеме DA2) подключен к выходу щупа через резистивный делитель напряжения (R7--R11). Кондснсаторы С4—С6 предотвращают самовозбуждение операционного усилителя DA2 и уменьшают возможные наводки на его вход.
В приборе использован миллиамперметр с током полного отклонения 1 мА. Подстроенные резисторы R14, R16—R23 — СП5-2. Резистор R7 составлен из двух сопротивлением 300 кОм, соединенных последовательно, R10 и R11 — из двух сопротивлением по 20 кОм. Диоды VD1, VD2 — германиевые высокочастотные.
О перациоиные усилители КР544УД1А можно заменить на любые другие с большим входным сопротивлением.
Особых требований к конструкции прибора не предъявляется. Конденсаторы Cl, С2, диод VDI и резистор RI монтируют в выносной головке, которую соединяют с прибором экранированным проводом. Ось переменного резистора R12 выведена на лицевую панель.
Налаживание начинают с установки стрелки измерительного прибора на нулевую отметку. Для этого переключатель SA1 переводят в положение «25 В», вход прибора соединяют с корпусом, а необходимую корректировку производят резистором R14. После этого переходят на диапазон «250 мВ», регулировкой резистора R12 устанавливают стрелку измерительного прибора на нулевую отметку и подбором резистора R2 добиваются наилучшей линейности шкалы. Затем проверяют линейность шкалы на остальных диапазонах. Если достичь линейности не удается, следует заменить один из диодов на другой экземпляр. Затем подстроечными резисторами R16—R23 калибруют прибор на всех диапазонах.

Примечание. Обращаем внимание читателей, что согласно справочным данным максимальные постоянные и импульсное обратные напряжения для примененного автором статьи в выносном щупе (диод ГД507А) равны 20 В. Поэтому далеко не каждый экземпляр этого типа диодов сможет обеспечить работу прибора на двух последних поддиапазонах.

А. Пугач г. Ташкент

Радио, №7, 1992г.

Простой гетеродинный индикатор резонанса.

С замкнутой накоротко катушкой L2 ГИР позволяет определять резонансную частоту от 6 МГц

до 30 МГц. С подключенной катушкой L2 диапазон измерения частоты - от 2,5 МГц до 10 МГц.

Резонансную частоту определяют, вращая ротор С1 и, наблюдая на экране осциллографа

изменение сигнала.

Генератор сигналов высокой частоты.

Генератор сигналов высокой частоты предназначен для проверки и налаживания различных высокочастотныхустройств. Диапазон генерируемых частот 2 ..80 МГц разбит на пять поддиапазонов:

I - 2-5 МГц

II - 5-15 МГц

III - 15 - 30 МГц

IV - 30 - 45 МГц

V - 45 - 80 МГц

Максимальная амплитуда выходного сигнала на агрузке 100 Ом составляет около 0,6 В. В генераторе предусмотрена плавная регулировка амплитуды выходного сигнала, а также возможность

амплитудной и частотной модуляции выходного сигнала от внешнего источника. Питание генератора осуществляется от внешнего источника постоянного напряжения 9... 10 В.

Принципиальная схема генератора приведена на рисунке. Он состоит из задающего генератора ВЧ, выполненного на транзисторе V3, и выходного усилителя на транзисторе V4. Генератор выполнен по схеме индуктивной трехточки. Нужный поддиапазон выбирают переключателем S1, а перестраивают генератор конденсатором переменной емкости С7. Со стока транзистора V3 напряжение ВЧ поступает на первый затвор

полевого транзистора V4. В режиме ЧМ низкочастотное напряжение поступает на второй затвор этого транзистора.

Частотная модуляция осуществляется с помощью варикапа VI, на который подается напряжение НЧ в режиме FM. На выходе генератора напряжение ВЧ регулируется плавно резистором R7.

Генератор собран в корпусе, изготовленном из одностороннего фольгироваиного стеклотекстолита толщиной 1,5 мм., размерами 130X90X48 мм. На передней панели генератора установлены

переключатели S1 и S2 типа П2К, резистор R7 типа ПТПЗ-12, конденсатор переменной емкости С7 типа КПЕ-2В от радиоприемника «Альпинист-405», в котором используются обе секции.

Катушка L1 намотана на ферритовом магнитопроводе М1000НМ (К10Х6Х Х4,б) и содержит (7+20) витков провода ПЭЛШО 0,35. Катушки L2 и L3 намотаны на каркасах диаметром 8 и длиной 25 мм с карбонильными подстроенными сердечниками диаметром 6 и длиной 10 мм. Катушка L2 состоит из 5+15 витков провода ПЭЛШО 0,35, L3 - из 3 + 8 витков. Катушки L4 и L5 бескаркасные

диаметром 9 мм намотаны проводом ПЭВ-2, 1,0. Катушка L4 содержит 2+4 витка, a L5- 1 + 3 витка.

Налаживание генератора начинают с проверки монтажа Затем подают напряжение питания и с помощью ВЧ вольтметра проверяют наличие генерации на всех поддиапазонах. Границы

диапазонов уточняют с помощью частотомера, и при необходимости подбирают конденсаторы С1-С4(С6), подстраивают сердечниками катушек L2, L3 и изменяют расстояние между витками катушек L4 и L5.

Мультиметр-ВЧ милливольтметр.

Сейчас самым доступным и самым распространенным прибором радиолюбителя стал цифровой мультиметр серии М83х.

Прибор предназначен для общих измерений и потому у него нет специализированных функций. Между тем, если вы занимаетесь радиоприемной или передающей техникой вам нужно измерять

небольшие ВЧ напряжения (гетеродин, выход каскада УПЧ, и т. д.), настраивать контура. Для этого мультиметр нужно дополнить несложной выносной измерительной головкой, содержащей

высокочастотный детектор на германиевых диодах. Входная емкость ВЧ-головки менее 3 пФ., что позволяет её подключать прямо к контуру гетеродина или каскада. Можно использовать диоды Д9, ГД507 или Д18, диоды Д18 дали наибольшую чувствительность (12 мВ). ВЧ-головка собрана в экранированном корпусе, на котором расположены клеммы для подключения щупа или проводников к измеряемой схеме. Связь с мультиметром при помощи экранированного телевизионного кабеля РК-75.

Измерение малых емкостей мультиметром

Многие радиолюбители используют в своих лабораториях мультиметры, некоторые из них позволяют измерять и емкости конденсаторов. Но как показывает практика, этими приборами нельзя замерить емкость до 50 пф, а до 100 пф – большая погрешность. Для того, чтобы можно было измерять небольшие емкости, предназначена эта приставка. Подключив приставку к мультиметру, нужно выставить на индикаторе значение 100пф, подстраивая С2. Теперь при подключении конденсатора 5 пф прибор покажет 105. Остается только вычесть цифру 100

Искатель скрытой проводки

Определить место прохождения скрытой электрической проводки в стенах помещения поможет сравнительно простой искатель, выполненный на трех транзисторах (рис. 1). На двух биполярных транзисторах (VT1, VT3) собран мультивибратор, а на полевом (VT2) - электронный ключ.

Принцип действия искателя основан на том, что вокруг электрического провода образуется электрическое поле его и улавливает искатель. Если нажата кнопка выключателя SB1, но электрического поля в зоне антенного щупа WA1 нет либо искатель находится далеко от сетевых проводов, транзистор VT2 открыт, мультивибратор не работает, светодиод HL1 погашен. Достаточно приблизить антенный щуп, соединенный с цепью затвора полевого

транзистора, к проводнику с током либо просто к сетевому роводу, транзистор VT2 закроется, шунтирование базовой цепи транзистора VT3 прекратится и мультивибратор вступит в действие. Начнет вспыхивать светодиод. Перемещая антенный щуп вблизи стены, нетрудно проследить за пролеганием в ней сетевых проводов.

Прибор позволяет отыскать и место обрыва фазного провода. Для этого нужно включить в розетку нагрузку, например настольную лампу, и перемещать антенный щуп прибора вдоль проводки. В месте, где светодиод перестает мигать, нужно искать неисправность.

Полевой транзистор может быть любой другой из указанной на схеме серии, а биполярные - любые из серии КТ312, КТ315. Все

резисторы - МЛТ-0,125, оксидные конденсаторы - К50-16 или другие малогабаритные, светодиод - любой из серии АЛ307, источник питания батарея «Крона» либо аккумуляторная батарея напряжением 6...9 В, кнопочный выключатель SB1 - КМ-1 либо аналогичный. Часть деталей прибора смонтирована на плате (рис. 2) из одностороннего фольгированного стеклотекстолита. Корпусом искателя может стать пластмассовый пенал (рис. 3)

для хранения школьных счетных палочек. В его верхнем отсеке крепят плату, в нижнем располагают батарею. К боковой стенке верхнего отсека прикрепляют выключатель и светодиод, а к верхней стенке - антенный щуп. Он представляет собой кониче-

ский пластмассовый колпачок, внутри которого находится металлический стержень с резьбой. Стержень крепят к корпусу гайками, изнутри корпуса надевают на стержень металлический лепесток, который соединяют гибким монтажным проводником с резистором R1 на плате. Антенный щуп может быть иной конструкции, например, в виде петли из отрезка толстого (5 мм) высоковольтного провода, используемого в телевизоре. Длина

отрезка 80...100 мм, его концы пропускают через отверстия в верхнем отсеке корпуса и припаивают к соответствующей точке платы. Желаемую частоту колебаний мультивибратора, а значит, частоту вспышек светодиода можно установить подбором резисторов RЗ, R5 либо конденсаторов С1, С2. Для этого нужно временно отключить от резисторов RЗ и R4 вывод истока по-

левого транзистора и замкнуть контакты выключателя. Если при поиске места обрыва фазного провода чувствительность прибора окажется чрезмерной, ее нетрудно снизить уменьшением длины антенного щупа или отключением проводника, соединяющего щуп с печатной платой. Искатель может быть собран и по несколько иной схеме (рис. 4) с использованием биполярных транзисторов разной структуры - на них выполнен генератор. Полевой же транзистор (VT2) по-прежнему управляет работой генератора при попадании антенного щупа WA1 в электрическое поле сетевого провода.

Транзистор VT1 может быть серии

КТ209 (с индексами А-Е) или КТ361,

VT2 - любой из серии КП103, VT3 - любой из серий КТ315, КТ503, КТ3102. Резистор R1 может быть сопротивлением 150...560 Ом, R2 - 50 кОм...1,2 МОм, R3 и R4 с отклонением от указанных на схеме номиналов на ±15%, конденсатор С1 - емкостью 5...20 мкФ. Печатная плата для этого варианта искателя меньше по габаритам (рис. 5), но конструктивное оформление практически такое же, что и предыдущего варианта.

Любой из описанных искателей можно применять для контроля работы системы зажигания автомобилей. Поднося антенный щуп искателя к высоковольтным проводам, по миганию светодиода определяют цепи, на которые не поступает высокое напряжение, или отыскивают неисправную свечу зажигания.

Журнал«Радио»,1991,№8,с.76

Не совсем обычная схема ГИРа изображена на рисунке. Отличие-в выносном витке связи. Петля L1 выполнена из медного провода диаметром 1,8 мм, диаметр петли около 18 мм, длина ее выводов 50 мм. Петля вставляется в гнезда, расположеные на торце корпуса. L2 намотана на стандартном ребристом корпусе и содержит 37 витков провода диаметром 0,6 мм с отводами от 15, 23, 29 и 32-го витка Диапазон- от 5,5 до 60 мгц

Простой измеритель емкости

Измеритель емкости позволяет измерять емкость конденсаторов от 0,5 до 10000пФ.

На логических элементах ТТЛ D1.1 D1.2 собран мультивибратор, частота которого зависит от сопротивления резистора включенного между входом D1.1 и выходом D1.2. Для каждого предела измерения устанавливается определенная частота при помощи S1, одна секция которого переключает резисторы R1-R4 , а другая конденсаторы С1-С4.

Импульсы с выхода мультивибратора поступают на усилитель мощности D1.3 D1.4 и далее через реактивное сопротивление измеряемого конденсатора Сх на простой вольтметр переменного тока на микроамперметре Р1.

Показания прибора зависят от соотношения активного сопротивления рамки прибора и R6, и реактивного сопротивления Сх. При этом Сх зависит от емкости (чем больше, тем меньше сопротивление).

Калибровку прибора производят на каждом пределе при помощи подстроечных резисторов R1-R4 измеряя конденсаторы с известными емкостями. Чувствительность индикатора прибора можно установить подбором сопротивления резистора R6.

Литература РК2000-05

Простой функциональный генератор

В радиолюбительской лаборатории обязательным атрибутом должен быть функциональный генератор. Предлагаем вашему вниманию функциональный генератор, способный вырабатывать синусоидальный, прямоугольный, треугольный сигналы при высокой стабильности и точности. При желании, выходной сигнал может быть модулированным.

Диапазон частот разделен на четыре поддиапазона:

1. 1 Гц-100 Гц,

2. 100Гц-20кГц,

3. 20 кГц-1 МГц,

4. 150KHz-2 МГц.

Точно частоту можно выставить, используя потенциометры P2 (грубо) и P3(точно)

регуляторы и переключатели функционального генератора:

P2 - грубая настройка частоты

P3 - точная настройка частоты

P1 - Амплитуда сигнала (0 - 3В при питании 9В)

SW1 - переключатель диапазонов

SW2 - Синусоидальный/треугольный сигнал

SW3 - Синусоидальный(треугольный)/меандр

Для контроля частоты генератора сигнал можно снять непосредственно с вывода 11.

Параметры:

Синусоидальный сигнал:

Искажения: менее 1% (1 кГц)

Неравномерность: +0,05 дБ 1 Гц - 100 кГц

Прямоугольный сигнал:

Амплитуда: 8В (без нагрузки) при питании 9В

Время нарастания: менее 50 нс (при 1 кГц)

Время спада: менее 30ns (на 1 кГц)

Рассимметрия: менее 5%(1 кГц)

Треугольный сигнал:

Амплитуда: 0 - 3В при питании 9В

Нелинейность: менее 1% (до 100 кГц)

Защита сети от перенапряжения

Отношение емкостей C1 и составной С2 и С3 влияет на выходное напряжение. Мощности выпрямителя хватает для паралельного включения 2-3х реле типа РП21 (24в)

Генератор на 174ха11

На рисунке представлен генератор на микросхеме К174ХА11, частота которого управляется напряжением. При изменении емкости С1 от 560 до 4700пФ можно получить широкий диапазон частот, при этом настройка частоты производится изменением сопротивления R4. Так например автор выяснил что, при С1=560пФ частоту генератора можно изменять при помощи R4 от 600Гц до 200кГц, а при емкости С1 4700пФ от 200Гц до 60кГц.

Выходной сигнал снимается с вывода 3 микросхемы с выходным напряжением 12В, автор рекомендует сигнал с выхода микросхемы подавать через токоограничивающий резистор с сопротивлением 300 Ом.

Измеритель индуктивности

Предлагаемый прибор позволяет измерять индуктивности катушек на трех пределах измерения - 30, 300 и 3000 мкГн с точностью не хуже 2% от значения шкалы. На показания не влияют собственная ёмкость катушки и ее омическое сопротивление.

На элементах 2И-НЕ микросхемы DDI собран генератор прямоугольных импульсов, частота повторений которых определяется ёмкостью конденсатора C1, С2 или СЗ в зависимости от включенного предела измерений переключателем SA1. Эти импульсы через один из конденсаторов С4, С5 или С6 и диод VD2 поступают на измеряемую катушку Lx, которая подключена к клеммам XS1 и XS2.

После прекращения очередного импульса во время паузы за счет накопленной энергии магнитного поля ток через катушку продолжает протекать в том же направлении через диод VD3, его измерение осуществляется отдельным усилителем тока собранного на транзисторах Т1, Т2 и стрелочным прибором РА1. Конденсатор С7 сглаживает пульсации тока. Диод VD1 служит для привязки уровня импульсов, поступающих на катушку.

При налаживании прибора необходимо использовать три эталонные катушки с индуктивностями 30, 300 и 3000 мкГн, которые поочередно подключаются вместо L1, и соответствующим переменным резистором R1, R2 или R3 стрелка прибора устанавливается на максимальное деление шкалы. Во время эксплуатации измерителя достаточно выполнять калибровку переменным резистором R4 на пределе измерения 300 мкГн, используя катушку L1 и включив выключатель SB1. Питание микросхемы производится от любого источника напряжением 4,5 - 5 В.

Расход тока каждого элемента питания составляет по 6 мА. Усилитель тока для миллиамперметра можно не собирать, а параллельно конденсатору С7 подключить микроамперметр со шкалой 50мкА и внутренним сопротивлением 2000 Ом. Индуктивность L1 может быть составной, но тогда следует расположить отдельные катушки взаимно перпендикулярно или как можно дальше друг от друга. Для удобства монтажа все соединительные провода оснащены штекерами, а на платах установлены соответствующие им гнёзда.



Простой индикатор радиоактивности

Гетеродинный индикатор резонанса

  Г.Гвоздицкий

Принципиальная схема предлагаемого ГИРа приведена на рис.1. Его гетеродин выполнен на полевом транзисторе VT1, включенном по схеме с общим истоком. Резистор R5 ограничевает ток стока полевого транзистора. Дроссель L2 - элемент развязки гетеродина от источника питания по высокой частоте.

Диод VD1, подсоединенный к выводам затвора и истока транзистора, улучшает форму генерируемого напряжения, приближая ее к синусоидальной. Без диода положительная полуволна тока стока станет искажаться из-за увеличения коэффициента усиления транзистора с повышением напряжения на затворе, что неизбежно приводит к появлению четных гармоник в спектре сигнала гетеродина

Через конденсатор С5 напряжение радиочастоты поступает на вход высоко¬частотного вольтметра-индикатора, состоящего из детектора, диоды VD2 и VD4 которого включены по схеме удвоения напряжения, что повышает чувствительность детектора и стабильность работы усилителя постоянного токи на транзисторе VT2 с микроамперметром РА1 в коллекторной цели. Диод VD3 стабилизирует образцовое напряжение на диодах VD2,VD4. Переменным резистором R3 объединенным с выключателем питания SА1, устанавливают стрелку микроамперметра РА1 в исходное положение на крайнюю правую отметку шкалы

Если а каких-то участках диапазона необходимо повысить точность шкалы, то параллельно катушке подключайте слюдяной конденсатор постоянной емкости.

Вариант катушек, выполненных на каркасах из лабораторных пробирок для забора крови, показаны на фото (рис.2) и подбираются радиолюбителем на желаемый диапазон



Индуктивность контурной катушки и емкость контура с учетом дополнительного конденсатора можно рассчитать по формуле

LC=25330/f²

где С- в пикофарадах, L - в микрогенри, f - в мегагерцах.

Определяя резонансную частоту иследуемого контура, к нему возможно ближе подносят катушку ГИРа и медленно вращая ручку блока КПЕ, следят за показаниями индикатора. Как только его стрелка качнется влево, отмечают соответствующее положение ручки КПЕ. При дальнейшем вращении ручки настройки стрелка прибора возвращается в исходное положение. Та отметка на шкале, где наблюдается максимальный *провал* стрелки, как раз и будет соответстовать резонансной частоте исследуемого контура

В описываемом ГИРе нет дополнительного стабилизатора питающего напряжения, поэтому при работе с ним рекомендовано пользоваться источником с одним и тем же значением напряжения постоянного тока - оптимально сетевым блоком питания со стабилизированным выходным напряжением.

Делать одну общую шкалу для всех диапазонов нецелесообразно из-за сложности такой работы. Тем более, что точность полученной шкалы при различной плотности перестройки применяемых контуров затруднит пользование прибором.

Катушки L1 пропитаны эпоксидным клеем или НН88. На ВЧ диапазоны их желательно намотать медным посеребренным проводом диаметром 1,0 мм.

Конструктивно каждая контурная катушка размещена на основании распространенного разъема СГ-3. Он вклеен в каркас катушки.

Упрощенный вариант ГИРа

От ГИРа Г.Гвоздицкого отличается тем, о чем уже писалось в статье - наличие среднего вывода сменной катушки L1, применен переменный конденсатор фирмы «Тесла» с твердым диэлектриком, нет диода, формирующего форму синусоидальную сигнала. Отсутствует выпрямитель-удвоитель напряжения ВЧ и УПТ, что снижает чувствительность прибора.

Из положительных сторон следует отметить наличие «растягивающих» отключаемых конденсаторов С1, С2 и простейший верньер, совмещенный с двумя переключающимися шкалами, которые можно градуировать карандашом, питание включается кнопкой только в момент проведения измерений, что экономит батарею.


Для питания счетчика Гейгера В1 требуется напряжение 400В, это напряжение вырабатывает источник на блокинг-генераторе на транзисторе VT1. Импульсы с повышающей обмотки Т1 выпрямляются выпрямителем на VD3C2. Напряжение на С2 поступает на В1, нагрузкой которого является резистор R3. При прохождении через В1 ионизирующей частицы в нем возникает короткий импульс тока. Этот импульс усиливается усилителем-формирователем импульсов на VT2VT3. В результате через F1-VD1 протекает более длительный и более сильный импульс тока - светодиод вспыхивает, а в капсюле F1 раздается щелчок.

Счетчик Гейгера можно заменить любым аналогичным, F1 любой электромагнитный или динамический сопротивлением 50 Ом.

Т1 наматывается на ферритовом кольце с внешним диаметром 20 мм, первичная обмотка содержит 6+6 витков провода ПЭВ 0,2, вторичная 2500 витков провода ПЭВ 0,06. Между обмотками нужно проложить изоляционный материал из лакоткани. Первой наматывают вторичную обмотку, на нее поверхность, равномерно, вторичную.

Прибор для измерения емкости

Прибор имеет шесть поддиапазонов,верхние пределы для которых равны соответственно 10пф, 100пф, 1000пф, 0,01мкф, 0,1мкф и 1мкф. Отсчёт ёмкости производится по линейной шкале микроамперметра.

Принцип действия прибора основан на измерении переменного тока, протекающего через исследуемый конденсатор. На операционном усилителе DA1 собран генератор прямоугольных импульсов. Частота повторения этих импульсов зависит от ёмкости одного из конденсаторов С1-С6 и положения движка подстроечного резистора R5. В зависимости от поддиапазона, она меняется от 100Гц до 200кГц. Подстроечным резистором R1 устанавливаем симметричную форму колебаний (меандр) на выходе генератора.

Диоды D3-D6, подстроечные резисторы R7-R11 и микроамперметр PA1 образуют измеритель переменного тока. Для того,чтобы погрешность измерений не превышала 10% на первом поддиапазоне (ёмкость до10пФ),внутреннее сопротивление микроамперметра должно быть не более 3кОм.На остальных поддиапазонах паралельно PA1 подключают подстроечные резисторы R7-R11.

Требуемый поддиапазон измерений устанавливают переключателем SA1. Одной группой контактов он переключает частотозадающие конденсаторы С1-С6 в генераторе,другой - подстроечные резисторы в индикаторе. Для питания прибора необходим стабилизированный двуполярный источник на напряжение от 8 до 15В. Номиналы частотозадающих конденсаторов С1-С6 могут отличаться на 20%, но сами конденсаторы должны иметь достаточно высокую температурную и временную стабильность.

Налаживание прибора производят в следующей последовательности. Сначала на первом поддиапазоне добиваются симметричных колебаний резистором R1. Движок резистора R5 при этом должен быть в среднем положении. Затем, подключив к клеммам "Сх" эталонный конденсатор 10пф, подстроечным резистором R5 устанавливают стрелку микроамперметра на деление соответствующее ёмкости эталонного конденсатора (при использовании прибора на 100мка, на конечное деление шкалы).

Схема приставки


Приставка к частотомеру для определения частоты настройки контура и его предварительной настройки. Приставка работоспособна в диапазоне 400 кгц-30 мгц. Т1 и Т2 могут быть КП307, BF 245

LY2BOK

Еще одна приставка к мультиметру -ВЧ вольтметр на диоде Шотки.

На страницах нашего сайта уже приводилось описание прибора , теоретической основой которого стали публикации Б.Степанова в журнале «Радио» (см. список литературы в конце заметки) . В то время в качестве измерительных головок применялись аналоговые стрелочные приборы. В 90-х годах ХХ и первом десятилетии ХXI века в связи с массовым распространением малогабаритных и недорогих цифровых мультиметров, началось их широкое применение в радиолюбительской практике.

В 2006 году в журнале «Радио» №8 Б.Степанов привел схему ВЧ головки к цифровому мультиметру с достаточно хорошей линейностью для применения на частотах до 30 мГц и чувствительностью до 0,1 В и менее. В ней применяется германиевый диод ГД507.

В «Радио» №1 - 2008, с. 61-62, Б.Степанов в статье «ВЧ вольтметр на диоде Шотки» привел схему пробника с диодами BAT -41 . Автором была реализована идея: при пропускании через диод небольшого постоянного тока в прямом направлении вольтметр с таким пробником (головкой) уже позволяет измерять ВЧ напряжение до 50 мВ.

Несколько слов о технологии изготовления пробника. Корпус выполнен из луженной упругой жести (разрезан и изогнут корпус СКД-24). Посередине его разделяет перегородка из односторонне фольгированного стеклотекстолита. На стороне перегородки, где осталась фольга, поверхностным монтажом выполнена схема ВЧ пробника (рис.1, 3).

Рис.1

Два диода Шотки для минимизации температурной зависимости (падение напряжения) размещены плотно друг к другу в общей ПХВ-трубке. С другой стороны перегородки - отсек питания. По размерам в него входит два элемента питания типа АА.

Рис.2

Соединение пробника с мультиметром осуществляется двухжильным экранированным проводом (рис.2). После балансировки пробника с помощью резистора R 2 проводят измерение ВЧ напряжения. Его отсчет осуществляется по шкале вольтметра 200 (2000) мВ.

Рис.3


Рис.4

Рис.5

Заранее информируем радиолюбителей - полное авторское описание работы этой конструкции, ее теоретическое обоснование и практическое воплощение Вы можете найти в указанном в заметке номере журнала «Радио».

Литература:

1. Б.Степанов. Измерение малых ВЧ напряжений. Ж. «Радио», № 7, 12 – 1980, с.55, с.28.

2. Б.Степанов. Высокочастотный милливольтметр. Ж. «Радио», № 8 – 1984, с.57.

3. Б.Степанов. ВЧ головка к цифровому вольтметру. Ж. «Радио», № 8, 2006, с.58.

4. Б.Степанов. ВЧ вольтметр на диоде Шотки. «Радио»,№1 - 2008, с. 61-62.