Как защитить акб от перезарядки. Схема умной защиты акб от переполюсовки. Где я применяю литиевые батареи

Так как я довольно часто делал обзоры аккумуляторов, а также упоминал о переделке аккумуляторного инструмента, то в личке меня часто спрашивают о тех или иных нюансах переделок.
Спрашивают разные люди и вопросы часто примерно одинаковы, потому я решил сделать небольшой обзор и одновременно ответить на некоторые общие вопросы, связанные с выбором комплектующих и переделкой батарей.

Возможно кому нибудь обзор покажется неполным, так как переделке подверглась только сама батарея, но не волнуйтесь, я планирую сделать вторую часть обзора, где попробую ответить на вопросы по переделке зарядного устройства. А заодно хотелось бы узнать, как считает общественность, что лучше - универсальная плата совмещенная с БП, плата сама по себе, платы DC-DC или другие варианты.

Шуруповерты, да и просто любой другой аккумуляторный инструмент, производится уже довольно много лет. Потому на руках у пользователей накопилась довольно большая масса как старых батарей, так и лежащего иногда мертвым грузом инструмента.
Путей решения данной проблемы несколько:
1. Просто ремонт батареи, т.е. замена старых элементов на новые.
2. Переделка с аккумуляторного питания на сетевое, вплоть до установки БП в аккумуляторный отсек.
3. Замена Никель-кадмиевых и Никель-Металл гидридных на Литиевые.

В качестве небольшого отступления, иногда смысла переделывать/ремонтировать просто нет. Например если у вас совсем дешевый шуруповерт, купленный на мегараспродаже за 5 баксов, то вас может несколько удивить, что стоимость переделки выйдет как несколько таких шуруповертов (я утрирую). Потому надо сначала для себя прикинуть плюсы/минусы от переделки и ее целесооразность, иногда проще купить второй инструмент.

Первый вариант наверняка многие уже проходили, как впрочем и я. Он дает результат, хотя в случае фирменного инструмента часто хуже, чем был изначально. По цене выходит немного дешевле, по трудоемкости проще и значительно.

Второй вариант также имеет право на жизнь, особенно если работа происходит дома и неохота тратиться на замену аккумуляторов.

Третий вариант самый трудоемкий, но позволяет существенно улучшить эксплуатационные характеристики инструмента. Это и увеличение емкости аккумулятора и отсутствие «эффекта памяти», а иногда и увеличение мощности.
Но кроме трудоемкости появляется побочный эффект, литиевые аккумуляторы немного хуже работают на морозе. Хотя при условии, что многие фирмы без проблем производят такой инструмент, то я считаю, что иногда проблема преувеличена, хотя и справедлива.

Батареи имеют разную конструкцию, хотя в общем они имеют много общего, потому я буду рассказывать, а заодно и показывать на примере одного из представителей такой категории, шуруповерта Bosch PSR 12 VE-2. Этот шуруповерт моего товарища, он же и выступил «спонсором» обзора, предоставив для переделки сам шуруповерт, аккумуляторы, плату защиты и расходники.
Шуруповерт довольно неплохой, имеется блокировка шпинделя, две скорости, потому переделывать имеет смысл.

Так получилось, что аккумуляторных блоков было даже три, но переделывать будем один, еще один оставлю для другого обзора:)

Кстати, аккумуляторы разные, но оба на 12 Вольт, емкость 1.2Ач, соответственно 14.4 Втч.

Разбираются аккумуляторные блоки по разному, но чаще всего корпус скручен при помощи нескольких саморезов. Хотя мне попадались варианты как на защелках, так и склеенные.

В любом случае внутри вы увидите примерно такую картину. В данном случае сборка из 10 никель-кадмиевых аккумуляторов, причем обычно применяются аккумуляторы одного типоразмера, но вот их укладка может иногда отличаться. На фото один из распространенных вариантов, 9 штук внизу и один в вертикальной части.

Первым делом предстоит выбор аккумуляторов для замены .

В электроинструменте применяются аккумуляторы, рассчитанные на большой разрядный ток.
Я не так давно делал разных аккумуляторов, в конце которого привел табличку, которая может помочь в этом вопросе, но если не уверены, то просто найдите документацию по аккумуляторам, которые планируете купить. Благо у фирменных аккумуляторов обычно с этим проблем нет.

Следует помнить, что часто заявленная емкость аккумулятора обратно пропорциональна максимально отдаваемому току. Т.е. чем на больший ток рассчитан аккумулятор, тем у него меньше емкость. Пример конечно довольно условный, но очень близок к реальности. Например очень емкие аккумуляторы Panasonic NCR18650B для электроинструмента не подходят, так как их максимальный ток всего 6.8 Ампера, шуруповерт же потребляет 15-40 Ампер.

А теперь что нельзя применять:
Аккумуляторы показанные на фото ниже, а также всякие Ультрафайр, Мегафайр, а также любые 18650 с заявленной емкостью 100500мАч.
Кроме того я категорически не рекомендую применять старые аккумуляторы от батарей ноутбуков. Во первых, они не рассчитаны на такой ток, во вторых, они скорее всего будут иметь большой разброс характеристик. Причем не только по емкости, а и по внутреннему сопротивлению. Лучше примените их где нибудь в другом месте, например в ПоверБанке для заряда вашего смартфона.

Альтернативный вариант, модельные батареи, например для катеров, квадракоптеров, машин и т.п.
Применять вполне можно, но я бы предпочел привычные 18650 или 26650 и виду наличия прочного корпуса, а также более реальной замены в будущем. 18650 и 26650 купить легко, а модельные могут убрать из продажи, заменив их батареями другого формфактора.

Но кроме всего прочего следует помнить, что нельзя применять аккумуляторы разной емкости. А вообще желательно использовать аккумуляторы из одной партии купив сразу необходимое количество (в идеале +1 про запас, если все таки попадутся разные). Т.е. если у вас на полке год лежит 2 аккумулятора, а потом вы покупаете к ним пару новых и соединяете последовательно, то это лишний шанс получить проблемы и балансировка здесь уже может не помочь, не говоря о аккумуляторах с изначально разной емкостью.

Для переделки батареи данного шуруповерта были выбраны аккумуляторы LGDBHG21865.
Шуруповерт не очень мощный, потому я думаю что проблем быть не должно. Аккумуляторы рассчитаны на длительный разрядный ток в 20 Ампер, при выборе аккумуляторов следует найти в документации на аккумулятор соответствующую строку и посмотреть какой ток там указан.

Литиевые аккумуляторы имеют заметно большую емкость при меньших габаритах, чем кадмиевые. На фото слева сборка 10.8В 3Ач (32Втч), справа родная, 12В 1.2Ач (14.4Втч).

При выборе количества требуемых аккумуляторов для замены следует руководствоваться тем, что условно один литиевый (LiIon, LiPol) заменяет 3 штуки обычных. В 12 Вольт батарее стоит 10 штук, потому обычно их меняют на 3 штуки литиевых. Можно поставить 4 штуки, но инструмент будет работать с перегрузкой и возможны ситуации, когда может пострадать.
Если у вас 18 Вольт батарея, то там скорее всего стоит 15 обычных, которые меняются на 5 литиевых, но такой инструмент встречается реже.
Или говоря простым языком,
2-3 NiCd = 1 литиевый,
5-6-7 NiCd = 2 литиевых,
8-9-10 NiCd = 3 литиевых,
11-12-13 NiCd = 4 литиевых
и т.д.

Перед сборкой необходимо проверить емкость аккумуляторов, потому как даже в одной партии аккумуляторы могут иметь разброс, причем чем «безроднее» производитель, тем больше будет разброс.
Например табличка из одного моего , где я тестировал, а попутно отбирал комплекты аккумуляторов для переделки радиостанций.

После этого следует полностью зарядить все аккумуляторы чтобы уравнять их заряд.

Соединение аккумуляторов.
Для соединения аккумуляторов применяют несколько решений:
1. Кассеты
2. Пайка
3. Точечная сварка.

1. Кассета, очень просто и доступно, но категорически не рекомендуется для больших токов, так как имеет высокое сопротивление контакта.
2. Пайка. Вполне имеет право на жизнь, я сам так делаю иногда, но данный способ имеет нюансы.
Как минимум паять надо уметь. Причем уметь паять правильно, а главное - быстро.
Кроме того надо иметь соответствующий паяльник.
Пайка происходит следующим образом: Зачищаем место контакта, покрываем это место флюсом (я использую F3), берем залуженный провод (лучше не очень большого сечения, 0.75мм.кв достаточно), набираем на жало паяльника много припоя, прикасаемся к проводу и вместе с ним прижимаем к контакту аккумулятора. Либо прикладываем провод к месту пайки и паяльником с большой каплей припоя прикасаемся к месте между проводом и аккумулятором.
Но как я писал выше, способ имеет нюансы, необходим мощный паяльник с массивным жалом. Аккумулятор имеет большую теплоемкость и при легком жале он банально его остудит до такой температуры, что припой «примерзает», иногда вместе с жалом (зависит от паяльника). В итоге вы будете долго пытаться прогреть место контакта и в итоге перегреете аккумулятор.
Потому берут старый паяльник с большим медным жалом, желательно хорошо прогретый, тогда прогреваться будет только место пайки и после тепло просто распределится и общая температура будет не очень высокой.
Проблемы касаются минусового вывода аккумулятора, с пайкой плюсового обычно сложностей нет, он легче, но тоже сильно перегревать не советую.

В любом случае, если у вас нет опыта пайки, то крайне не рекомендую этот способ.

3. Самый правильный способ - точечная сварка, мгновенно, без перегрева. Но сварочный станок должен быть правильно настроен чтобы не сделать сквозную дыру в дне аккумулятора, потому лучше обратиться к профессионалам. За небольшую денежку на рынке вам сварят вашу батарею.
Альтернативный вариант, в некоторых онлайн магазинах предлагается услуга (вернее варианты лотов, с лепестками и без) по привариванию контактных лепестков, это не очень дорого, но гораздо безопаснее пайки.

Данную сборку «сварил» тот же товарищ, который и дал мне шуруповерт для обзора.
На фото видно, что между лепестком и корпусом аккумулятора проложен тряпичный изолятор. Это важно, так как без него вы можете перегреть лепесток и он проплавит изоляцию аккумулятора, последствия думаю понятны.

Внимательные читатели наверняка заметили непонятные пластмассовые проставки между аккумуляторами.
Данное решение относится к классу - как делать правильно.
Инструмент в работе подвержен вибрации и возможна ситуация повреждения изоляции между банками (я такого не встречал, но теоретически). Установка проставок исключает данную ситуацию. Можно не ставить, но так более правильно. Вот только где их купить, не подскажу, но можно поискать на рыках в батарейных киосках.

Затем необходимо вывести провода для подключения к плате защиты и клеммной колодке.
Для силовых проводов я использую провод сечением не менее 1.5мм.кв, а для менее нагруженных цепей 0.5мм.кв.
Конечно вы спросите, зачем провод 0.5мм.кв если там тока нет и можно применить гораздо более тонкий провод. Провод большего сечения имеет толще изоляцию и обеспечивает большую механическую прочность, т.е. его сложнее повредить. Вы конечно можете использовать любой провод, я лишь показал вариант, который считаю более правильным.
В идеале провода сначала залудить с обеих сторон, а свободные концы изолировать, но такое возможно при второй переделке одного и того же аккумулятора, когда длина проводов уже известна. Для первой я обычно беру провода с запасом.

Если присмотреться, то на верхнем фото заметны отверстия в крайних клеммах аккумулятора, это также делается для повышения надежности соединения. Незалуженный провод вставляется в отверстие и запаивается, в таком варианте меньше риск получить плохой контакт.
В общем паяем провода, заодно желательно дополнительно изолировать клеммы при помощи термоусадки.

В итоге у нас получится такая сборка. От плюсового контакта отходит два провода, это обусловлено особенностью подключения платы защиты.

Последний шаг в подготовке сборки скорее желателен, чем обязателен. Так как сборка «живая», то необходимо зафиксировать элементы друг относительно друга. Для этого я использую термоусадочную трубку, хотя в данном случае корректнее - трубу. Она довольно тонкая, но весьма прочная, ее цель именно сжать всю конструкцию.

Надеваем термоусадку и при помощи фена усаживаем ее. Привычный вариант с зажигалкой скорее всего не пройдет, так как желательно делать это равномерно.
В тоге у нас вполне заводская, на вид, сборка аккумуляторов.

Примеряем собранную сборку в корпусе. Вообще конечно обычно это делают сначала, этот момент я как то упустил, но думаю что это вполне логично:)

Монтаж.

Дальше следует этап установки сборки в батарейный отсек. Тривиальная на первый взгляд операция кроет в себе небольшие подводные камни.
Для начала вымываем пыль и грязь из отсека. Я сделал ошибку и протер только нижнюю часть, остальное потом вычищал щеткой и ваткой. Потому проще помыть с мылом и просушить.

Дальше приклеивание сборки. В исходном варианте аккумуляторы просто были зажаты половинками корпуса, но в нашем случае такое редко возможно, потому сборки чаще всего приклеивают.
Здесь как и раньше, есть несколько вариантов, рассмотрим их.
1. Двухсторонний скотч
2. Термоклей
3. Силиконовый герметик
4. Прибить насквозь 150 гвоздями, а с обратной стороны загнуть. :)

Так как последний вариант больше подходит для любителей экстрима, то распишу более «приземленные».
1. Очень просто и удобно, но так как место контакта маленькое, то держит не очень хорошо, а кроме того надо использовать хороший скотч.

2. Вариант хороший, сам иногда пользуюсь (кстати, применяю черный термоклей). Но в данном случае не советовал бы. Дело в том, что термоклей имеет свойство «плыть» при нагреве. Для этого достаточно забыть шуруповерт летом на улице и получить в итоге болтающуюся внутри батарею. Я не скажу что такое будет обязательно, но такое свойство клей имеет, факт. Кроме того, термоклей не очень хорошо липнет к массивным элементам и при нагрузке может просто отвалиться.

3. На мой взгляд самый удобный вариант. Герметик не боится нагрева, не течет со временем и имеет хорошую адгезию к большинству материалов. Кроме того он довольно эластичен и при этом практически не теряет эластичность со временем.

Я использовал санитарный герметик Церезит. На фото может показаться что он еле намазан, это не так, герметика довольно много. Кстати, следует учитывать, что большинство герметиков не клеит к предыдущему слою герметика.
Кроме того можно применить похожий монтажный клей в таких же тубах, например «Момент», но силикон мне кажется более подходящим.

В общем наносим герметик, вставляем нашу сборку, прижимаем и оставляем сохнуть.

Плата защиты.

Вот мы и дошли до собственно предмета данного обзора, платы защиты. Заказаны они были еще весной, но посылка потерялась, их потом выслали заново, в итоге они таки пришли.
Почему были заказаны именно эти платы я уже не вспомню, но они смирно лежали и ждали своего часа, дождались:)

Данная плата рассчитана на подключение трех аккумуляторов и имеет заявленный рабочий ток 20 Ампер.
Только сейчас я обратил внимание, что плата имеет довольно высокий порог срабатывания защиты по превышению напряжения, 4.325 Вольта. Возможно я неправ, но считаю что лучше 4.25-4.27.
Также указано, что ток 20 Ампер это максимальный длительный, ток срабатывания при перегрузке составляет 52 Ампера.

Табличка очень похожа на таблички от других плат, потому я выделю отдельные важные пункты.
1. Ток балансировки, так как данная плата этого не умеет, то здесь прочерк
2. Максимальный длительный ток, для большинства применения надо 20-25 Ампер. На менее мощном инструменте достаточно и 15-20, более мощный потребует 25-35 и более.
3. Максимальное напряжение на элементе, при котором плата отключает батарею. Зависит от типа примененных аккумуляторов.
4. Минимальное напряжение на элементе при котором плата отключит нагрузку. 2.5 Вольта это довольно мало, лучше выбирать этот параметр таким же, как заявлено в даташите на аккумулятор.
5. Ток, при котором срабатывает защита от перегрузки. Не надо стремится к запредельным величинам. Хотя этот ток напрямую связан с максимальным рабочим, потому обычно здесь проблем нет. Даже если сработала защита, то чаще всего достаточно просто отпустить кнопку шуруповерта и потом нажать опять.
6. Данный пункт отвечает за автоматический сброс срабатывания защиты.
7. Сопротивление ключевых транзисторов, чем меньше, тем лучше.

Внешне к плате претензий нет, качество сборки вполне аккуратное.

Снизу ничего нет, это и к лучшему, не будет проблем с приклеиванием платы:)

О платах защиты я расскажу немного подробнее.
Для начала отвечу на вопрос - а можно без платы защиты? Нет.
Плата защиты как минимум обеспечивает отключение при перегрузке, это вредно как для аккумуляторов, так и для инструмента.
Кроме того плата защищает от перезаряда и переразряда. По сути можно сказать, что переразряд можно почувствовать по падению мощности, но это относится не ко всем инструментам, а кроме того можно попасть в ситуацию, когда один элемент сильно «устал» и напряжение на нем падает очень резко. В таком варианте легко получить переполюсовку, т.е. аккумулятор не просто уйдет в «ноль», а через него будет проходить ток в обратной полярности. Такой эффект получается только при последовательном соединении элементов и он нем почему то часто забывают.
Литиевые аккумуляторы довольно опасны и плата защиты для них обязательна!

Платы в основном делятся на два типа (хотя на самом деле их больше), с возможностью балансировки и без.

Объясню, что такое балансировка и зачем она вообще нужна.
Сначала вариант «пассивной» балансировки.
Такой вариант применяется на подавляющем большинстве плат как самый простой в реализации.
По мере достижения аккумулятором порогового напряжения он начинает нагружаться на резистор, который берет на себя часть зарядного тока. Пока этот аккумулятор «борется», другие успевают зарядиться до своего максимума.
Дальше несколько картинок с этой .

1. Один из аккумуляторов либо заряжен больше других, либо имеет немного меньшую емкость.
2. В случае простого заряда на нем будет напряжение выше, чем на остальных
3. Балансир отбирает на себя часть тока заряда, не давая напряжению подняться вше максимального.
4. В итоге все аккумуляторы заряжены равномерно.

Кроме того немного я рассказывал о балансирах в отдельном видео.

Второй вариант балансира, «активный». Он имеет совсем другую реализацию и не подходит для работы с большими токами заряда. Его задача, всегда поддерживать одинаковое напряжение на элементах. Работает он по принципу «перекачки» энергии от аккумулятора с большим напряжением в аккумулятор с меньшим. В одном из своих я делал такой балансир, кому интересно, могут прочитать чуть более подробно.
А в этом я делал вариант правильной зарядки с активным балансиром и оттуда табличка, по которой можно увидеть процесс балансировки без подключения батареи и платы к зарядному устройству… Да, он медленный, но он протекает всегда, а не только во время заряда.

Мы немного отвлеклись.
Плата защиты с балансировкой обычно содержит несколько больших SMD резисторов, количество которых кратно количеству каналов. при 3 каналах это 3 или 6. На них чаще всего написано что то типа - 470, 510, 101 и т.п.
Слева плата 4 канала, справа - 3 канала.

Здесь балансира нет, зато есть токоизмерительные шунты в виде SMD резисторов с низким сопротивлением. На них обычно написано R010, R005. Потому плату с балансиром и без отличить можно по внешнему виду.
Кстати, платы могут не иметь токоизмерительного шунта. Это не всегда означает, что плата не умеет измерять ток. Просто иногда контроллер умеет использовать в качестве «шунта» полевые транзисторы.

Бывают и отдельно платы балансиров, а также комплекты балансир + плата защиты.
Такой вариант вполне имеет право на жизнь, если устраивает по цене, но проводов будет больше.

Попутно я часто встречаю заблуждение насчет возможности использования данных плат как зарядного устройства. Людей обычно сбивает с толку слово Charge в указании лота.
Эти платы не умеют управлять зарядом, они только защищают аккумуляторы. Но неграмотность продавцов или кривой перевод делает свое дело и люди продолжают ошибаться.
Но существуют и платы «все в одном», правда они не рассчитаны на высокие токи и для электроинструмента не подходят.

На данной плате установлено восемь ключевых транзисторов, а точнее - четыре пары.
Применены транзисторы и они соответственно имеют сопротивление и максимальный ток - 5.9мОм 46 Ампер и 4мОм 85 Ампер.
Слева виден токоизмерительный шунт. Данный вариант более предпочтителен чем SMD резисторы, которые иногда имеют свойство «подгорать» из-за больших импульсных токов.

Плата не имеет центрального контроллера и собрана по довольно примитивной схемотехнике, канальные мониторы напряжения и дальше схема, сводящая все к управлению полевыми транзисторами. Это просто, но это работает. Хотя наверное сейчас я бы выбрал что нибудь более «продвинутое».
Кроме того плата не имеет балансира. Вы спросите, как так, ведь я выше расписывал преимущества балансира.
Балансир это хорошо, и я рекомендую покупать платы именно с ним. Но также я считаю, что нормально подобранные аккумуляторы в балансире особо и не нуждаются, от сильного падения он не спасет, а проблем может добавить. Были случаи, когда неисправный балансир высаживал батарею.
Кроме того большинство производителей электроинструмента не ставит балансиры в свои батарейные блоки. Правда там действует принцип «запланированного устаревания», потому я все таки больше за балансир, чем против него.

Кроме того на плате есть контакты для подключения термодатчика (а выше на фотографии из другого магазина есть пример такой платы с термодатчиком). Термодатчик это хорошо и в моих планах разобраться как подключить родной термодатчик батареи шуруповерта.
Предположительно надо выпаять резистор RT, заменить резистор RY на номинал, соответствующий номиналу нового датчика, а новый датчик припаять к контактам RK.

С платами вроде немного разобрались, переходим к продолжению переделки.

Так как плата в процессе работы может нагреваться (хотя и не сильно), то для защиты аккумуляторов от лишнего тепла я решил сделать прокладку. Кроме того она защитит аккумуляторы в случае разрыва полевых транзисторов и сквозного прогорания платы (такое бывает, но крайне редко, потому скорее теоретически).
Я взял обрезок стеклотекстолита и снял фольгу.

Затем при помощи все того же силиконового герметика приклеил прокладку к аккумуляторной сборке, а потом приклеил саму плату.
Конструкция конечно страшная, но в данном случае это самое простое и довольно надежное решение.
Плата приклеивалась не «на обум», предварительно я прикинул как удобнее ее потом будет подключать.

Схема подключения была на странице магазина, но на самом деле она практически не отличается от схем подключения других плат. Аккумуляторы последовательно, минус к плате, первая средняя точка считая от минуса - В1+, вторая В2+, третья В3+. Но так как аккумуляторов всего три, то В3+ это плюс всей сборки.
Второй провод от плюсового вывода идет к нагрузке.
Минусовой провод нагрузки (как и зарядного) подключается к отдельному контакту платы.

Дальше подключаем провода.
Порядок подключения проводов может быть критичным, я обычно подключаю сначала минус сборки, затем плюс, а уже потом средние точки начиная от минусового вывода (В1, В2 и т.д.).
Есть информация, что неправильная последовательность подключения может выжечь контроллер, хотел добавить в обзор, но не нашел ссылок.
Кроме того паять надо очень аккуратно, чтобы не замкнуть контакты, иначе будет печальная картина. Пожалуй это один из самых сложных, для новичка, этапов в переделке… Я сначала залуживаю площадки платы, а потом паяю, так легче.

В идеале провода потом также зафиксировать при помощи герметика, чтобы не болтались.

В самом начале я показал блок аккумуляторов, который вынул из батарейного отсека.
Сверху виден клеммник, выбрасывать его нельзя, так как он очень важен для переделки. Клеммники бывают разные, но суть у них одна, быстрое соединение с инструментом или зарядным устройством.
Сначала, когда я начал переделывать, я решил что резистор здесь задает напряжение заряда (зарядное рассчитано на 7.2-14.4 Вольта), но проверка показала, что зарядное даже не имеет для него соответствующего контакта, как и шуруповерт:(
На еще один из контактов выведен терморезистор для контроля температуры батареи, правда это не сильно помогло, один из аккумуляторных блоков имеет явные следы перегрева и деформированной пластмассы.

Но перед подключением следует подумать о фиксации клемника. Изначально его держали аккумуляторы, но так как аккумуляторов уже нет, то придется импровизировать.
Для фиксации я измерил внутреннюю ширину выступающей части, а затем вырезал кусочек пластмассы соответствующей ширины. Правда все равно немного прогадал и вырезал чуть меньше, пришлось намотать изоленты:)

Обычно отпаивается оба провода, но в моем случае минусовой провод был достаточной длины и я его не стал убирать, а заменил только плюсовой.
Кстати, так как клеммная колодка изготовлена из пластмассы, а сами клеммы довольно массивные, то здесь либо применяем тот же принцип, что и при пайке аккумуляторов, либо просто откусываем старый провод в 7-10мм от конце клеммы и припаиваем новый провод к нему. Второй вариант не хуже, но заметно проще.

1. Припаиваем плюсовой провод сборки к клеммнику. Термоусадка это скорее уже перфекционизм, коротить там особо некуда, но хотелось аккуратно.
2. Вставляем клеммник на родное место, забиваем (или очень сильно вдавливаем) пластмассовый фиксатор, который я вырезал выше.

Припаиваем минусовой провод от клемника к плате и покрываем плату защитным лаком. А вот последнее уже не перфекционизм, а вполне полезное дело, так как плата находится под напряжением и может эксплуатироваться в условиях большой влажности. Если не покрывать плату лаком, то возможна коррозия открытых частей дорожек и выводов компонентов.
Я использую лак Пластик 70.

На этом с аккумулятором все, ставим обратно пружины, фиксаторы и собираем в кучку.
Предварительно лучше перевернуть всю конструкцию и вытрусить то, что могло случайно попасть внутрь, у меня это был обрезок изоляции провода.
Заодно можно протереть/смазать механизм фиксации аккумулятора в шуруповерте.

Программа минимум выполнена, аккумулятор работает, но так как родное зарядное еще не переделано, то подключил пока к блоку питания.

Так как в данный обзор скорее всего уже не влезет переделка зарядного (и не только), да и хочется сделать это красиво и правильно, то планируется еще один обзор на эту тему, где я расскажу о возможных доработках, переделке зарядного и вариантах правильного заряда.

Для заряда можно конечно использовать распространенное зарядное устройство типа Imax. Но я считаю такой вариант неудобным.
Кроме того, иногда выводят разъем для балансировки аккумуляторов шуруповерта. Вещь конечно полезная, но как по мне, то немного лишняя, а кроме того не всегда безопасная. На мой взгляд достаточно просто один раз подобрать аккумуляторы и дальше просто заряжать без балансировки. Либо купить плату защиты с балансиром, а торчащие разъемы это увеличение шанса их закоротить, поломать, да и это скорее вариант для дома.

Для более реального применения лучше либо переделать родное зарядное, либо полностью заменить его «начинку».
Первый вариант технически сложен, так как алгоритм заряда литиевого аккумулятора заметно отличается от кадмиевого, а кроме того некоторые родные зарядные устройства и назвать то так язык не поворачивается, внутри только трансформатор, диодный мост и пяток деталей, никакого контроля в помине нет.
Например у Боша еще и «продвинутый» вариант, с контроллером.

В качестве второго варианта можно использовать родной трансформатор зарядного устройства, его диодный мост и кусок печатной платы в качестве клеммной колодки.

Для переделки надо докупить плату типа такой как на фото.
Либо любую другую, которая умеет стабилизировать напряжение и ток. Обычно у этих плат как минимум два подстроечных резистора. Но в данном случае даже три, третий регулирует порог включения индикации окончания заряда.

Если по фото, то первый - напряжение, второй - индикация, третий - ток заряда.

В таком варианте подключается плата вместо родной, придется добавить только электролитический конденсатор емкостью 1000-2200мкФ.

Но такое решение имеет и свои минусы. Плата зарядного только отображает завершение процесса заряда, но не отключает аккумулятор. Не то чтобы это совсем плохо-плохо, но ничего хорошего в этом также нет.
Для решения данной проблемы можно применить простейшее решение, отключать выход после окончания процесса заряда.
Для этого придется добавить четыре детали, реле на 24 Вольта, оптрон PC817, диод и кнопку.
Светодиод оптрона включается вместо светодиода отображающего процесс заряда, а транзистор оптрона управляет реле.
Но в данном варианте реле не может включиться само, потому параллельно контактам необходима кнопка (как я говорил, решение очень простое). Т.е. вставили аккумулятор, нажали на кнопку, пошел процесс заряда, после окончания заряда реле отключилось и аккумулятор обесточился.
Кнопку можно подключить параллельно контактам транзистора оптрона, тогда подойдет и обычная тактовая кнопка. Естественно в обоих случаях нужна кнопка без фиксации.

Оптрон и реле.

Также можно использовать и другие платы, наверняка многие их видели на просторах Али.
Первая попроще, регулируется только ток и напряжение, индикация заряда выставлена фиксировано, светодиод погасает когда ток упадет меньше 1/10 от установленного тока заряда (стандартный алгоритм заряда лития).
Вторая по сути как первая, но в более «продвинутом» варианте, отображается напряжение аккумулятора и ток его заряда.
Обзор , и .

Кстати, для заряда можно даже использовать плату без стабилизации тока, но придется ее немного доработать, я даже показывал .

Все приведенные варианты используют родной трансформатор зарядного устройства, но если его нет, то преобразователь просто надо дополнить блоком питания., например таким.
но стоит учитывать, БП должен быть на напряжение выше, чем напряжение окончания заряда аккумулятора, разница нужна примерно 3-5 Вольт или больше.
Т.е. в данном случае 15 Вольт БП не подходит, но обычно такие БП имеют регулировки выходного напряжения ±20% и его можно немного поднять. Но можно просто купить БП на 24 Вольта и ничего не регулировать.

Если же у вас в наличии только БП на 12 Вольт, а заряжать надо аккумулятор как в обзоре, то можно использовать универсальный преобразователь, например , правда и стоит он дороже.

О доработках.
Можно добавить индикацию заряда батареи, например звуковую или звуковую + световую.

Либо измерять напряжение при помощи небольшого , а то и вообще поставить гибрид вольтметр + звук.

Но лично мне больше нравятся простые варианты, измерение напряжения с индикацией несколькими светодиодами.

Причем последний вариант я уже делал и схему и изготовление.

Почти такой же вариант применен в одном из моих , а точнее в его батареях.

Краткое видео результата переделки. На видео видно, что в тяжелых случаях происходит срабатывание защиты. Аккумулятор был уже чуть подсажен, потому в режиме трещотки на второй скорости защита срабатывала не всегда. При полностью заряженном аккумуляторе это происходит чаще. Но также видно, что срабатывание защиты происходит корректно, нагрузка, отключение. После этого я отпускаю кнопку, нажимаю опять и шуруповерт работает.

Для большего удобства можно использовать пластиковые рамки, которые я показывал в своих видео.


А для заряда использовать подобное зарядное устройство.

На этом в общих чертах все, по поводу переделки батарей рассказал вроде все, что вспомнил, а по поводу зарядного устройства более подробно расскажу как нибудь в другой раз, так как есть много идей.

Да, чуть не забыл, собственно о предмете обзора, плате защиты.
Плата работает, работает отлично, по крайней мере проблем с ней я не обнаружил.
При зажатии патрона, установке трещотки на максимум (вроде уровень 5) и второй скорости, плата уходит в защиту с шансом примерно 50/50. Если включить первую скорость, то тока для срабатывания защиты не хватает. В общем вполне нормальное поведение. Можно уменьшить номинал шунта и защита будет срабатывать позже, но я не вижу в этом смысла.

Да, теперь о стоимости переделки. Цена трех аккумуляторов около 15 долларов + 5-8 плата защиты + доллар за всякую мелочевку, итого выходит около 20-25 долларов за одну батарею.
Дорого? Я считаю что весьма дорого, потому дешевый инструмент переделывать просто нет смысла. Но в любом случае переделка не так сложна, как кажется на первый взгляд, главное начать.

В обзоре я не писал про аккумуляторы LiFe, по большому счету с ними все абсолютно также, за исключением того, что к ним надо специальные платы, так как напряжение этих аккумуляторов немного ниже, чем у привычных LiIon. Аккумуляторы отличные, надежность с ними будет выше, но емкость батареи - ниже.

Надеюсь, что обзор был полезен, как всегда жду вопросов в комментариях.
Естественно возможны варианты, и я тоже могу где то ошибаться, потому вышенаписанное лишь мое видение процесса.

Планирую купить +354 Добавить в избранное Обзор понравился +249 +508

Только вот имеется в ней такой небольшой недостаток, эта схема не умеет распознавать степень разряженности аккумулятора, что дает возможность подключать даже убитые АКБ(замкнутые, рассыпавшиеся и т.д.), ли ж бы хватало напряжения замкнуть контакты реле. А это может привести к ужасным последствиям, и пожар не самое страшное!

И вот совсем недавно пришла мне в голову умная схема защиты от переполюсовки, которая сумела бы определять, можно ли заряжать этот аккумулятор или нет и сохранила предыдущий параметр определения правильности подключения клемм к Аккумулятору

На самом дел все просто, схема просто определяет какое напряжение на АКБ, то есть степень зарядки, и если оно соответствует нужным пределам, то замыкает контакты реле и пускает ток заряда!

Из схемы видно что это обычный компаратор на ОУ сравнивающий опорное напряжение собранное на цепи R7-VD3, с напряжением АКБ. И если напряжение на неинв.(+) входе поднимается чуть выше чем на инве.(-), транзистор VT1 включает реле.
Настраивается все очень просто. На клемму + АКБ подается напряжение 10.5-11В(напряжение разряженного, рабочего АКБ) удобно и с помощью построечного резистора R4(в сторону увеличения сопротивления) выставляем момент, когда щелкнет релюха K1. На этом настройка заканчивается:) Кстати удобно использовать для настройки

Данная схема собрана на ОУ не зря, поскольку на втором ОУ можно собрать еще одно устройство, я его еже не придумал, но наработки уже есть. К примеру на второи ОУ можно сделать устройство которое будет показывать что все подключено верно
Но если у вас нет возможности ждать, и не хочется тратить попросту операционик, то могу предложить схему чуть проще и с таким же принципом работы

Многие не знают, но TL431 –это обычный компаратор, и для сравнивания напряжения внутри него уже присутствует ИОН 2,5В. Поэтому вместо кучи обвязки вокруг ОУ можно использовать TL431 с одним единственным резисторным делителем, напряжение на котором должно быть чуть больше 2.5В, что бы реле включилось:)

У этой схемы есть еще одно преимущество, ее можно с успехом использовать и для 6В АКБ. Для этого надо заменить реле на 5В, и два резистора R1 и R3 примерно на половину.

Способ настройки такой же самый как и в предыдущей схеме, только на клемму +АКБ для 6В напряжение надо подавать в районе 5-5.5В

Все, с такой защитой можно не боятся что ваш АКБ, ну если ему “торба”, просто взорвется. Поэтому удачи с повторением схемы.

Удачи вам с повторением и жду ваших вопросов в комментариях

Для безопасной, качественной и надежной зарядки любых типов аккумуляторов, рекомендую

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках , так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20А\ч, АКБ 9А\ч зарядит за 7 часов, 20А\ч — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80А\Ч. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%.
На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки.
Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. Евровилку

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и СА\СА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150А\ч

Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку

Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.

Есть две вещи, которые очень не любят аккумуляторы: перезарядка и переразрядка. И если первую проблему успешно решают современные зарядные устройства (кроме простейших выпрямителей), то с разрядом ниже критического уровня дела обстоят хуже - почти никогда питаемые от батарей устройства не обеспечивают предохранение от сверхразрядки. Не исключается и случайный разряд - когда просто забыли отключить прибор и он разряжается, разряжается... Для решения этой проблемы предлагается к самостоятельной сборке простой низковольтный модуль отключения цепи. Такая схема довольно проста и применима к любой литиевой или свинцово-кислотной аккумуляторной батарее. Естественно порог отключения можно настроить соответственно АКБ.

Схема блока защиты АКБ

Как это работает. Когда кнопка сброса нажата, положительное напряжение поступает на затвор N-канального MOSFET силового транзистора.

Если напряжение на выходе стабилитрона U1 выше 2.5 вольт, а это определяется делителем напряжения, состоящим из R4, R5 и R6, катод U1 оказывается подключен к его аноду, что делает его отрицательным по отношению к его эмиттеру, R2 ограничивает базовый ток до безопасного значения и обеспечивает достаточный ток для работы U1. И транзистор Q1 будет удерживать схему открытой, даже когда вы отпустите кнопку сброса.

Если напряжение на U1, падает ниже 2,5 вольт, стабилитрон отключается и подтягивает положительное напряжение эмиттера R1, выключив его. Резистор R8 также выключает полевой транзистор, приводя к отключению нагрузки. Причём нагрузка не будет включена снова до нажатия кнопки сброс.

Большинство малогабаритных полевых транзисторов рассчитаны только для +/- 20 вольт на затворе - источник напряжения, а это означает, что схема блока подходит для не более чем 12 вольтовых устройств: если требуется рабочее напряжение выше, необходимо будет добавить дополнительные элементы схемы, чтобы сохранить безопасность работы полевика. Пример использования такой схемы: простой контроллер заряда солнечных батарей показанный на фото.


Если требуется более низкое напряжение, чем 9 вольт (или выше 15) - надо будет пересчитывать значения резисторов R4 и R6, чтобы изменить диапазон регулировки.

В схему можно поставить практически любой кремниевый PNP транзистор с номиналом не менее 30 вольт и любой N-канальный MOSFET с номинальным напряжением не менее 30 вольт и током более чем в 3 раза от того, что вы собираетесь коммутировать. Проходное сопротивление доли Ома. Для прототипа использовался F15N05 - 15 ампер, 50 вольт. Для высоких токов подойдут транзисторы IRFZ44 (50 А Макс.) и PSMN2R7-30PL (100 А Макс.). Также можно параллельно соединить несколько однотипных полевых транзисторов по мере необходимости.

Это устройство не должно оставаться подключенным к АКБ долговременно, так как потребляет само несколько миллиампер из-за светодиода и тока потребления U1. В выключенном состоянии его ток потребления ничтожно мал.

Возникла у меня необходимость защиты аккумулятора от глубокого разряда. И основное требование к схеме защиты, что бы после разряда аккумулятора, она отключила нагрузку, и не смогла ее самостоятельно включить, после того как аккумулятор немного наберет напряжение на клеммах, без нагрузки.

За основу схемы здесь взят 555-й таймер, включенный в качестве генератора одиночного импульса, который после достижения минимального порогового напряжения, закроет затвор транзистора VT1 и отключит нагрузку. Схема сможет включить нагрузку только после отключения, и повторного подключения питания.

Плата (Зеркалить не нужно):

Плата SMD (Нужно зеркалить):

Все SMD резисторы — 0805. Корпус MOSFET — D2PAK, но можно и DPAK.

При сборке, стоит обратить внимание на то, что под микросхемой (в плате на DIP компонентах) есть перемычка и про нее главное не забыть!

Настраивается схема следующим образом: резистор R5 выставляется в верхнее по схеме положение, далее подключаем ее к источнику питания с выставленным на нем напряжением, при котором она должна отключить нагрузку. Если верить википедии , то напряжение полностью разряженного 12-и Вольтового аккумулятора соответствует 10,5 Вольт, это и будет нашим напряжением отключения нагрузки. Далее вращаем регулятор R5 до тех пор, пока нагрузка не отключится. Вместо транзистора IRFZ44 можно использовать практически любой мощный низковольтный MOSFET, необходимо только учитывать, что он должен быть рассчитан на ток, раза в 2 больше, чем будет максимальный ток нагрузки, а напряжение затвора должно быть в пределах напряжения питания.

При желании, подстроечный резистор можно заменить на постоянный, номиналом 240 кОм и при этом резистор R4 необходимо заменить на 680 кОм. При условии, что порог у TL431 2,5 Вольта.

Потребляемый ток платой — около 6-7 mA.

Защита литий-ионных аккумуляторов (Li-ion). Я думаю, что многие из вас знают, что, например, внутри аккумулятора от мобильного телефона имеется ещё и схема защиты (контроллер защиты), которая следит за тем, чтобы аккумулятор (ячейка, банка, итд…) не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания. Когда аккумулятор исчерпывает свой срок службы, из него можно достать плату контроллера защиты, а сам аккумулятор выбросить. Плата защиты может пригодиться для ремонта другого аккумулятора, для защиты банки (у которой нету схем защиты), либо же просто можно подключить плату к блоку питания, и поэкспериментировать с ней.

У меня имелось много плат защиты от пришедших в негодность аккумуляторов. Но поиск в инете по маркировкам микросхем ничего не давал, словно микросхемы засекречены. В инете находилась документация только на сборки полевых транзисторов, которые имеются в составе плат защиты. Давайте посмотрим на устройство типичной схемы защиты литий-ионного аккумулятора. Ниже представлена плата контроллера защиты, собранная на микросхеме контроллера с обозначением VC87, и транзисторной сборке 8814 ():

На фото мы видим: 1 - контроллер защиты (сердце всей схемы), 2 - сборка из двух полевых транзисторов (о них напишу ниже), 3 - резистор задающий ток срабатывания защиты (например при КЗ), 4 - конденсатор по питанию, 5 - резистор (на питание микросхемы-контроллера), 6 - терморезистор (стоит на некоторых платах, для контроля температуры аккумулятора).

Вот ещё один вариант контроллера (на этой плате терморезистор отсутствует), собран он на микросхеме с обозначением G2JH, и на транзисторной сборке 8205A ():

Два полевых транзистора нужны для того, чтобы можно было отдельно управлять защитой при заряде (Charge) и защитой при разряде (Discharge) аккумулятора. Даташиты на транзисторы находились практически всегда, а вот на микросхемы контроллеров - ни в какую!! И на днях вдруг я наткнулся на один интересный даташит на какой-то контроллер защиты литий-ионного аккумулятора ().

И тут, откуда не возьмись, явилось чудо - сравнив схему из даташита со своими платами защиты, я понял: Схемы совпадают, это одно и то же, микросхемы-клоны! Прочитав даташит, можно применять подобные контроллеры в своих самоделках, а поменяв номинал резистора, можно увеличить допустимый ток, который может отдать контроллер до срабатывания защиты.