Обзор схем зарядных устройств автомобильных аккумуляторов. Зарядное с управлением на тиристорах Управление зу по первичной обмотке

Тиристорный регулятор в зарядном устройстве.
Для более полного ознакомления с последуущим материалом, просмотрите предыдущие статьи: и .

♣ В этих статьях говориться о том, что существуют 2–х полупериодные схемы выпрямления с двумя вторичными обмотками, каждая из которых рассчитана на полное выходное напряжение. Обмотки работают поочередно: одна на положительной полуволне, другая на отрицательной.
Используются два полупроводниковых выпрямительных диода.

Предпочтительность такой схемы:

  • — токовая нагрузка на каждую обмотку и каждый диод в два раза меньше, чем на схему с одной обмоткой;
  • — сечение провода двух вторичных обмоток может быть в два раза меньше;
  • — выпрямительные диоды могут быть выбраны на меньший максимально допустимый ток;
  • — провода обмоток наиболее охватывают магнитопровод, магнитное поле рассеяния минимально;
  • — полная симметричность — идентичность вторичных обмоток;


♣ Используем такую схему выпрямления на П – образном сердечнике для изготовления регулируемого зарядного устройства на тиристорах.
Двух — каркасная конструкция трансформатора позволяет это сделать наилучшим образом.
К тому же две полу-обмотки получаются совершенно одинаковыми.

♣ И так, наше задание : построить устройство для зарядки аккумулятора с напряжением 6 – 12 вольт и плавным регулированием зарядного тока от 0 до 5 ампер .
Мною уже предлагался для изготовления , но регулировка зарядного тока в нем проводится ступенчато.
Посмотрите в этой статье, как выполнялся расчет трансформатора на Ш – образном сердечнике. Эти расчетные данные подходят и под П –образный трансформатор той же мощности.

Расчетные данные из статьи таковы:

  • — мощность трансформатора – 100 ватт ;
  • — сечение сердечника – 12 см.кв. ;
  • — выпрямленное напряжение - 18 вольт ;
  • — ток — до 5 ампер ;
  • — количество витков на 1 вольт – 4,2 .

Первичная обмотка:

  • — количество витков – 924 ;
  • — ток – 0,45 ампера;
  • — диаметр провода – 0,54 мм.

Вторичная обмотка:

  • — количество витков – 72 ;
  • — ток – 5 ампер;
  • — диаметр провода – 1,8 мм.

♣ Эти расчетные данные примем за основу построения трансформатора на П – образном сердечнике.
С учетом рекомендаций выше указанных статей по изготовлению трансформатора на П — образном сердечнике, построим выпрямитель для зарядки аккумулятора с плавной регулировкой зарядного тока .

Схема выпрямителя изображена на рисунке. Она состоит из трансформатора ТР , тиристоров Т1 и Т2 , схемы управления зарядным током, амперметра на 5 — 8 ампер, диодного моста Д4 — Д7 .
Тиристоры Т1 и Т2 одновременно выполняют роль выпрямительных диодов и роль регуляторов величины зарядного тока.

♣ Трансформатор Тр состоит из магнитопровода и двух каркасов с обмотками.
Магнитопровод может быть набран как из стальных П – образных пластин, так и из разрезанного О – образного сердечника из навитой стальной ленты.
Первичная обмотка (сетевая на 220 вольт — 924 витка) делится пополам – 462 витка (а – а1) на одном каркасе, 462 витка (б – б1) на другом каркасе.
Вторичная обмотка (на 17 вольт) состоит из двух полуобмоток (по 72 витка) мотается на первом (А — Б) и на втором (А1 – Б1) каркасе по 72 витка . Всего 144 витка.

Третья обмотка (с — с1 = 36 витков) +(d — d1 = 36 витков) в сумме 8,5 В +8,5 В = 17 вольт служит для питания схемы управления и состоит из 72 витков провода. На одном каркасе (с – с1) 36 витков и на другом каркасе (d — d1) 36 витков.
Первичная обмотка мотается проводом диаметром – 0,54 мм .
Каждая вторичная полуобмотка мотается проводом диаметром 1,3 мм. , рассчитанным на ток 2,5 ампера.
Третья обмотка мотается проводом диаметром 0,1 — 0,3 мм , какой попадется, ток потребления здесь маленький.

♣ Плавная регулировка зарядного тока выпрямителя основана на свойстве тиристора переходить в открытое состояние по импульсу, поступающему на управляющий электрод. Регулируя время прихода управляющего импульса, можно управлять средней мощностью проходящей через тиристор за каждый период переменного электрического тока.

♣ Приведенная схема управления тиристорами работает по принципу фазо-импульсного метода .
Схема управления состоит из аналога тиристора, собранного на транзисторах Тр1 и Тр2 , временной цепочки, состоящей из конденсатора С и резисторов R2 и Ry , стабилитрона Д7 и разделительных диодов Д1 и Д2 . Регулировка зарядного тока производится переменным резистором Ry .

Переменное напряжение 17 вольт снимается с третьей обмотки, выпрямляется диодным мостом Д3 – Д6 и имеет форму (точка №1) (в кружке №1). Это, пульсирующее напряжение положительной полярности с частотой 100 герц , меняющее свою величину от 0 до 17 вольт . Через резистор R5 напряжение поступает на стабилитрон Д7 (Д814А, Д814Б или любой другой на 8 – 12 вольт ). На стабилитроне напряжение ограничивается до 10 вольт и имеет форму (точка №2 ). Далее следует зарядно – разрядная цепочка (Ry, R2, C) . При возрастании напряжения от 0 начинает заряжаться конденсатор С, через резисторы Ry, и R2 .
♣ Сопротивление резисторов и емкость конденсатора (Ry, R2, C) подобраны таким образом, чтобы конденсатор зарядился за время действия одного полупериода пульсирующего напряжения. Когда напряжение на конденсаторе достигнет максимальной величины (точка №3) , с резисторов R3 и R4 на управляющий электрод аналога тиристора (транзисторы Тр1 и Тр2 ) поступит напряжение для открытия. Аналог тиристора откроется и заряд электричества, накопленный в конденсаторе, выделится на резисторе R1 . Форма импульса на резисторе R1 показана в кружке №4 .
Через разделительные диоды Д1 и Д2 импульс запуска подается одновременно на оба управляющих электрода тиристоров Т1 и Т2 . Открывается тот тиристор, на который в данный момент поступила положительная полуволна переменного напряжения с вторичных обмоток выпрямителя (точка №5) .
Изменяя сопротивление резистора Ry , изменяем время за которое полностью зарядится конденсатор С , то есть изменяем время включения тиристоров во время действия полуволны напряжения. В точке №6 показана форма напряжения на выходе выпрямителя.
Изменяется сопротивление Ry, изменяется время начала открывания тиристоров, изменяется форма заполнения полупериода действующим током (фигура №6). Заполнение полупериода может регулироваться от 0 до максимума. Весь процесс регулирования напряжения во времени показан на рисунке.
♣ Все показанные замеры формы напряжения в точках №1 — №6 проведены относительно плюсового вывода выпрямителя.

Детали выпрямителя:
— тиристоры Т1 и Т2 – КУ 202И-Н на 10 ампер . Каждый тиристор устанавливать на радиатор площадью 35 – 40 см.кв. ;
— диоды Д1 – Д6 Д226 или любые на ток 0,3 ампера и напряжение выше 50 вольт ;
— стабилитрон Д7 — Д814А — Д814Г или любой другой на 8 – 12 вольт ;
— транзисторы Тр1 и Тр2 любые маломощные на напряжение свыше 50 вольт .
Подбирать пару транзисторов необходимо с одинаковой мощностью, разными проводимостями и с равными коэффициентами усиления (не менее 35 — 50 ).
Мною опробованы разные пары транзисторов: КТ814 – КТ815, КТ816 – КТ817; МП26 – КТ308, МП113 – МП114 .
Все варианты работали хорошо.
— Сонденсатор емкостью 0,15 микрофарады ;
— Резистор R5 ставить мощностью в 1 ватт . Остальные резисторы мощностью 0,5 ватта .
— Амперметр рассчитан на ток 5 – 8 ампер

♣ Необходимо с вниманием отнестись к монтажу трансформатора. Советую перечитать статью . Особенно то место, где приводятся рекомендации по фазировке включения первичной и вторичной обмоток.

Можно использовать схему фазировки первичной обмотки приведенную ниже, как на рисунке.


♣ В цепь первичной обмотки последовательно включается электрическая лампочка на напряжение 220 вольт и мощность 60 ватт . эта лампочка будет служить вместо предохранителя.
Если обмотки будут сфазированы неправильно , лампочка загорится .
Если соединения проведены правильно , при включении трансформатора в сеть 220 вольт лампочка должна вспыхнуть и потухнуть.
На клеммах вторичных обмоток должно быть два напряжения по 17 вольт , вместе (между А и Б) 34 вольта .

Все монтажные работы необходимо проводить с соблюдением ПРАВИЛ ТЕХНИКИ ЭЛЕКТРОБЕЗОПАСНОСТИ!

В нагрузку данного простого регулятора мощности можно включать лампы накаливания, нагревательные устройства различного типа и проч., по мощности соответствующие применяемым тиристорам. Методика настройки регулятора, содержится в подборе переменного резистора. Однако, лучше всего подобрать такой потенциометр, последовательно с постоянным резистором, чтобы напряжение на выходе регулятора мощности изменялось в максимально возможных широких пределах. А.АНДРИЕНКО, г.Кострома....

Для схемы "ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВ"

Автомобильная электроникаЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВК.СЕЛЮГИН, г.Новороссийск, Краснодарского края.Кислотные аккумуляторы "не любят длительного пребывания без работы". Глубокий саморазряд бывает губителен для них. Если авто ставится на долгосрочную стоянку, то возникает проблема: что совершать с аккумулятором. Его либо отдают кому-нибудь в работу, либо продают, что одинаково неудобно. Я предлагаю довольно простое устройство, которое может служить как для зарядки аккумуляторов, так и для их долгосрочного хранения в рабочем состоянии. Со вторичной обмотки трансформатора Т1, ток в которой ограничен включением последовательно с первичной обмоткой балластного конденсатора (С1 или С1+С2), ток подается на диодно-тиристорный мост, нагрузкой которого является аккумуляторная батарея (GB1). В качестве элемента применен автомобильный регулятор напряжения генератора (РНГ) на 14 В любого типа, предназначенный для генераторов с заземленной щеткой. Схема терморегулятора на симисторе Мною опробованы регулятор типа 121.3702 и интегральный -Я112А. При использовании "интегралки" выводы "Б" и "В" соединяются совместно и с "+" GB1. Вывод "Ш" соединяется с цепью управляющих электродов тиристоров. Таким образом, на аккумуляторной батарее поддерживается напряжение 14В при зарядном токе, определяемом емкостью конденсатора С2, которая ориентировочно рассчитывается по формуле:где Iз - зарядный ток (А), U2 - напряжение вторичной обмотки при"нормальном"включении трансформатора (В), U1 - напряжение сети.Трансформатор - любой, мощностью 150...250 ВА, с напряжением на вторичной обмотке 20...36 В. Диоды моста - л...

Для схемы "Вечный блок питания"

Для работы телевизора, компьютера, радиоприемника обязательно требуется блок стабилизированного питания. Устройства, включенные в сеть круглосуточно, а также схемы, собранные начинающим радиолюбителем, требуют абсолютно надежного блока питания (БП), чтобы не было повреждения схемы или возгорания блока питания. А теперь несколько "страшных" историй: у одного моего друга при пробое транзистора "вылетело" много микросхем в самодельном компьютере; у другого после замыкания ножкой стула проводов, идущих к импортному радиотелефону, расплавился блок питания; у третьего то же с питанием "советского" промышленного ТА с АОН; у начинающего радиолюбителя после КЗ блок питания начал дарить на выход большое напряжение; на производстве КЗ линии измерительных приборов почти обязательно приводит к прекращению работы и необходимости срочного ремонта. Схемы импульсных блоков мы затрагивать не будем вследствие их сложности и невысокой надежности, а рассмотрим схему компенсационного последовательного стабилизатора питания (рис.1). ...

Для схемы "Транзисторный регулятор напряжения"

В нескольких номерах журнала "Радиоаматор" были напечатаны схемы регуляторов сетевого напряжения на тиристорах, но такие устройства имеют ряд существенных недостатков, ограничивающих их возможности. Во-первых, они вносят довольно заметные помехи в электрическую сеть, что нередко отрицательно сказывается на работе телевизоров, радиоприемников, магнитофонов. Во-вторых, их можно применять только для менеджмента нагрузкой с активным сопротивлением (электролампой, нагревательным элементом) и нельзя использовать одновременно с нагрузкой индуктивного характера (электродвигателем, трансформатором). Между тем все эти проблемы легко решить, собрав электронное устройство, в котором роль регулирующего элемента выполнял бы не тиристор, а мощный транзистор. Такую конструкцию я и предлагаю, причем ее может повторить любой, более того неопытный радиолюбитель, затратив при этом минимум времени и средств. Транзисторный регулятор напряжения содержит мало радиоэлементов, не вносит помех в электрическую сеть и работает на нагрузку как с активным, так и с индуктивным сопротивлением. Его можно использовать для регулировки яркости свечения люстры или настольной лампы, температуры нагрева паяльника или электроплитки, электрокамина, скорости вращения электродвигателя, вентилятора, электродрели или напряжения на обмотке трансформатора. ...

Для схемы "Защита ламп накаливания"

Не секрет, что галогенные лампы, применяемые в авто, нередко выходят из строя. Происходит это в результате броска тока, возникающего в результате того, что спираль лампы накаливания в холодном состоянии обладает малым сопротивлением. Вот ослепительный пример: автомобильная галогенная лампа, применяемая в противотуманных фарах, потребляет в нормальном режиме 55 Вт (при 12 В питания), следовательно, сопротивление нити накала в нагретом состоянии будет составлять приблизительно 2,6 Ом. На самом же деле сопротивление, измеренное омметром, чуть превышает 0,2 Ом. В результате бросок тока составит 60 А! Для продления срока службы ламп накаливания в и иной низковольтной аппаратуре и служит предлагаемое устройство. Время плавного разогрева - выхода лампы на режим зависит от сопротивления резистора R1 и емкости конденсатора С1, и при указанных на схеме номиналах составляет приблизительно 2,5 с. Т160 схема регулятора тока Напряжение насыщения составного транзистора VT1, VT2 можно устанавливать вращением ротора резистора R2. Это позволяет подобрать необходимое пора выхода на режим, в зависимости от мощности нагрузки в интервале от нуля до максимальной задержки. Транзисторы VT1 и VT2 нужно установить на общий теплоотвод площадью приблизительно 100 см2, при токе потребляемом лампой до 6 А. Выбор силового транзистора КТ872А не случаен. Данный транзистор производства НПО "Транзистор" (г. Минск) способен выдерживать длительное пора значительные броски тока при среднем токе до 10 А. Если переключатель SA1 сменить перемычкой, а последовательно с резистором R1 включить микротумблер или микрокнопку - появляется дополнительное удобство-отсутствие мощного силового выключателя. Его роль теперь выполняет силовой транзистор.А.ФИЛИПОВИЧ, Минская обл., г. Дзержинск...

Для схемы "Микромощный прецизионный стабилизатор"

Для схемы "Некоторые применения операционного усилителя типа 741 (140 УД7)"

Радиолюбителю-конструкторуНекоторые применения операционного усилителя типа 741БичЦентр повышения квалификации McGraw-Hill (Вашингтон, округ Колумбия)Широко распространенный операционный усилитель (ОУ) типа 741(140УД7) имеет большой коэффициент подавления синфазной помехи, что позволяет с малыми затратами реализовать на его основе усилитель с регулируемым коэффициентом усиления и более того аналоговый ключ. Коэффициент усиления ОУ можно легко регулировать, изменяя соотношение между сигналами, поступающими на его входы. В случае равенства сигналов на входах они подавляются как синфазная помеха, и выходное напряжение равно нулю. Когда сигнал на одном входе больше, чем на другом, происходит его усиление.В схеме усилителя с регулируемым коэффициентом усиления (а) сопротивления резисторов R1 и R2 выбираются как обычно, исходя из заданного входного сопротивления (в данном случае f1/2) и коэффициента усиления (-R2/R1). Изменяя сопротивление резистора обратной связи R2 можно достичь максимального ослабления сигнала при максимальном сопротивлении резистора R3(R3=R2), регулирующего коэффициент усиления. Как сделать схему ждущий сторож с малым потреблением Практически при регулировке управляющего резистора от максимума до нуля коэффициент усиления изменяется от нуля до -R2/R1 без сдвига уровня постоянного тока на выходе.Указанную схему можно также использовать в качестве аналогового ключа (б). В этом случае, однако, существуют следующие ограничения: обязательная емкостная связь на выходе, размах входного сигнала не более 1,2 и единичный коэффициент усиления ОУ (R1=R2=R3). При выполнении этих условий схема работает как безукоризненный аналоговый ключ.Когда на вход цифровой управляющей схемы поступает уровень логической 1 (2,4-4 В), транзистор насыщается и заземляет резистор R3, в результате чего сигнал ослабляется на 70- 90 дБ. При включенном транзисторе потенциал на неинвертирующем входе ОУ стан...

Для схемы "АВТОМОБИЛЬНЫЕ СТРОБОСКОПИЧЕСКИЕ ПРИБОРЫ СТБ-1 И "АВТО-ИСКРА"

Автомобильная электроникаАВТОМОБИЛЬНЫЕ СТРОБОСКОПИЧЕСКИЕ ПРИБОРЫ СТБ-1 И "АВТО-ИСКРА"Нашей промышленностью выпускаются стробоскопические приборы: автомобильный стробоскоп СТБ-1 (рис. 1) и прибор "Авто-искра" (рис. 2), предназначенные для проверки и регулировки начальной установки угла опережения зажигания на автомашинах. Известно, насколько важна для работы двигателя правильная установка начального угла опережения зажигания, а также исправность центробежного и вакуумного регуляторов угла опережения зажигания. Неправильная установка начального угла опережения зажигания всего на 2-3°, а также неисправности регуляторов опережения приводят к потере мощности двигателя, его перегреву, повышенному расходу горючего и, в конечном счете, к сокращению срока службы двигателя. Однако проверка и регулировка угла опережения зажигания является весьма тонкой, трудоемкой операцией, которая не постоянно доступна более того опытному автолюбителю. Стробоскопические приборы позволяют упростить эту операцию. С их помощью более того малоопытный автолюбитель может в течение 5-10 мин проверить и отрегулировать начальную установку угла опережения зажигания, а также проверить работоспособность центробежного и вакуумного регуляторов опережения. /img/s...

Для схемы "Блок питания с системой защиты от КЗ"

Практически каждый начинающий радиолюбитель стремится сначала своего творчества сконструировать сетевой блок питания (БП), чтобы потом использовать его для питания различных экспериментальных устройств. И конечно, хотелось бы, чтобы тот самый БП "подсказывал" об опасности выхоа из строя отдельных узлов при ошибках или неисправностях монтажа. На сегодняшний день существует множество схем, в том числе и с индикацией короткого замыкания (КЗ) на выходе. Подобным индикатором в большинстве случаев обычно служит лампа накаливания, включенная в разрыв нагрузки. Но подобным включением мы увеличиваем входное сопротивление источника питания или, проще говоря, ограничиваем ток, что в большинстве случаев, конечно, допустимо, но совсем не желательно. Схема, изображенная на рис.1, не только сигнализирует о КЗ, абсолютно не влияя на выходное сопротивление устройства, но и автоматически отключает нагрузку при закорачивании выхода. Кроме того, светодиод HL1 напоминает, что устройство включено в сеть, a HL2 светится при перегорании плавкого предохранителя FU1, указывая на необходимость его замены. Автоматическое отключение радиоаппаратуры Рассмотрим работу устройства. Переменное напряжение, снимаемое со вторичной обмотки Т1, выпрямляется диодами VD1...VD4, собранными по мостовой схеме. Конденсаторы С1 и С2 препятствуют проникновению из сети высокочастотных помех, а оксидный конденсатор СЗ сглаживает пульсации напряжения, поступающего на вход компенсационного стабилизатора, собранного на VD6, VT2, VT3 и обеспечивающего на выходе стабильное напряжение 9 В. Напряжение стабилизации можно изменить, подбирая стабилитрон VD6, например, при КС156А оно составит 5 В, при Д814А - 6 В, при Д814Б - 8 В, при Д814Г - 10 В, при Д814Д - 12 В. При желании выходное напряжение можно сделать регулируемым, для этого между анодом и катодом VD6 включают переменный резистор сопротивлением 3-5 кОм, а базу VT2 подключают к движку этого резистора. Рассмотрим работу защитного устройства. У...

Для схемы "Блок питания 13,8 В10 А"

Предлагаемый блок питания (рис.1) предназначен для работы с мощной низковольтной нагрузкой, например, с УКВ ЧМ радиостанциями, имеющими выходную мощность порядка 50 Вт ("Alinco DR-130"). Его достоинства - низкое падение напряжения на выпрямительных диодах и регулирующем транзисторе и наличие защиты от короткого замыкания .Напряжение сети через замкнутые контакты выключателя SA1. предохранитель FU1 и сетевой фильтр C5-L1-L2-C6 поступает на обмотку I силового трансформатора Т1. Со вторичной обмотки II Т1, имеющей отвод от середины, положительные полуволны напряжения через выпрямительные диоды VD2 и VD3 поступают на конденсатор сглаживающего фильтра С9.К фильтру подключен линейный стабилизатор с регулирующим элементом на полевом транзисторе (ПТ) VT2. Для менеджмента этим транзистором требуется напряжение 2,5.. .3 В, поэтому отпадает необходимость в отдельном выпрямителе для питания управляющих цепей ПТ, как например, в . Для увеличения коэффициента стабилизации в стабилизаторе применен "регулируемый стабилитрон" - микросхема DA1 TL431 (отечественный аналог - КР142ЕН19). Регулятор сварочника на то125-12 Транзистор VT1 - согласующий, стабилитрон VD1 стабилизирует напряжение в его базовой цепи. Выходное напряжение стабилизатора можно рассчитать по приближенной формулеСтабилизатор работает следующим образом. Допустим, при подключении нагрузки выходное напряжение снизилось. Тогда уменьшается напряжение в средней точке делителя R5-R6, микросхема DA1 (как параллельный стабилизатор) потребляет меньший ток, и на ее нагрузке (резисторе R2) уменьшается падение напряжения. Этот резистор стоит в эмиттерной цепи транзистора VT2 и, поскольку напряжение на его базе стабилизировано стабилитроном VD1. транзистор открывается сильнее, обеспечивая подъем напряжения на затворе регулирующего транзистора VT2. Последний больше открывается и компенсирует падение напряжения на выходе стабилизатора. Таким образом обеспечивается стабилизация выходного напряжения. Выходное напряжение устанавливается резистором R6. Стаб...

Простая схема зарядного устройства для автомобильного аккумулятора

Как известно из законов работы трансформатора, ток в первичной обмотке, если трансформатор понижающий, меньше тока во вторичной обмотки в отношение напряжений или количества витков трансформатора. Я считаю хорошим зарядным устройством если оно способно выдавать 10А на выходе. На входе трансформатора будет 10/(220/15)= 0,7А. Согласитесь, током легче управлять если он меньшей величины. Зарядное устройство с регулировкой тока по первичной обмотке приведено ниже:

Схема очень простая и не требует наладки. Диоды моста в низковольтной сети необходимо установить на радиатор. Поскольку тиристор КУ202Н будет нагружен менее чем на 10% на радиатор его устанавливать нет смысла, он может быть установлен прямо на печатную плату. Пример собранной схемы на печатной плате приведен ниже.

Данное зарядное устройство высоконадежное и простое в сборке. Единственное что надо иметь – это трансформатор от 200 Вт, хотя это условие распространяется практически на все зарядные устройства.
Данную схему можно применять не только для автомобильной зарядки но и для любой в которой есть трансформатор…
Также, эту схему можно применять и для лабораторного источника большой мощности…
Опять-же, если найти мощный трансформатор 220/220 то можно получить ЛАТР

НА ДАЛЬНЕЙШЕЕ ЕЁ ПРИМЕНЕНИЕ ДУМАЙТЕ САМИ……

Автомобильная электроникаСхема десульфатирующего устройства Схема десульфатирующего зарядного устройства предложена Самунджи и Л. Симеоновым. Зарядное устройство выполнено но схеме одпополупериодного выпрямителя на диоде VI с параметрической стабилизацией напряжения (V2) и усилителем тока (V3, V4). Сигнальная лампочка Н1 горит при включенном в сеть трансформаторе. Средний зарядный ток приблизительно 1,8 А регулируется подбором резистора R3. Разрядный ток задается резистором R1. Напряжение на вторичной обмотке трансформатора равно 21 В (амплитудное важность 28 В). Напряжение на аккумуляторе при номинальном зарядном токе равно 14 В. Поэтому зарядный ток аккумулятора возникает лишь тогда, когда амплитуда выходного напряжения усилителя тока превысит напряжение аккумулятора. За пора одного периода переменного напряжения формируется один импульс зарядного то-ка в течение времени Тi. Разряд аккумулятора происходит в течение времени Тз= 2Тi. Поэтому амперметр показывает среднее важность зарядного тока, равное примерно одной трети от амплитудного значения суммарного зарядного и разрядного токов. В зарядном ycтройстве можно использовать трансформатор ТС-200 от телевизора. Вторичные обмотки с обеих катушек трансформатора снимают и проводом ПЭВ-2 1,5 мм наматывают новую обмотку, состоящую из 74 витков (по 37 витков на каждой катушке). Транзистор V4 устанавливают на радиатор с эффективной площадью поверхности приблизительно 200 см кв. Детали:Диоды VI типа Д242А. Д243А, Д245А. Д305, V2 один или два включенных последовательно стабилитрона Д814А, V5 типа Д226: транзисторы V3 типа КТ803А, V4 типа КТ803А или КТ808А.При настройке устройств...

Для схемы "Определение числа витков обмоток трансформатора"

Определение числа витков обмоток трансформатора, если не известны его тип и параметры, производится следующим образом.Пользуясь омметром, определяют расположение выводов всех обмоток трансформатора. Так как накальная обмотка силового трансформатора и вторичная обмотка выходного трансформатора имеют небольшое число витков сравнительно толстого провода, отличить эти обмотки от сетевой (вторичной) можно или при внешнем осмотре - по наибольшему диаметру выводов, если выводы выполнены обмоточным проводом, или по наименьшему сопротивлению, если по диаметру провода обмотку определить невозможно.При наличии зазоров между катушкой и матитопроводом на катушку поверх обмоток наматывают (можно тонким проводом) дополнительную обмотку, и чем больше витков, тем точнее будут результаты измерения.Одну из вторичных обмоток принимают в качестве первичной и подают на нее небольшое (не выше 5...7 В) переменное напряжение.Измерив напряжение на каждой трансформатора, в том числе и на дополнительной, определяют число витков любой обмотки по формуле:где Ui - напряжение на i-обмотке; Uдon - напряжение на дополнительной обмотке; (ωдоп - число витков дополнительной обмотки.Если на катушке трансформатора нет места для дополнительной обмотки, можно использовать часть наружной обмотки. Укв схема Для этого осторожно вскрывают слой внешней изоляции катушки, чтобы получить доступ к последнему слою обмотки, выполненному обычно виток к витку. От конца обмотки отсчитывают некоторое число витков (ωдоп). Один щуп вольтметра подключают к концу обмотки, другим щупом с иголкой, прокалывая эмаль последнего отсчитанного витка, измеряют переменное напряжение Uдon на части обмоток, содержащей (ωдоп) витков. В роли первичной обмотки, на которую падают исходное напряжение, может быть использована любая обмотка трансформато...

Для схемы "Простой регулятор тока сварочного трансформатора"

Важной особенностью конструкции любого сварочного аппарата является вероятность регулировки рабочего тока. В промышленных аппаратах используют разные способы регулировки тока: шунтирование с помощью дросселей всевозможных типов, изменение магнитного потока за счет подвижности обмоток или магнитного шунтирования, применение магазинов активных балластных сопротивлений и реостатов. К недостаткам такой регулировки надо отнести сложность конструкции, громоздкость сопротивлений, их сильный нагрев при работе, неудобство при переключении. Наиболее оптимальный вариант - ещё при намотке вторичной обмотки сделать ее с отводами и, переключая количество витков, изменять ток. Однако использовать такой способ можно для подстройки тока, но не для его регулировки в широких пределах. Кроме того, регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами. Так, через регулирующее устройство проходят значительные токи, что приводит к его громоздкости, а для вторичной цепи практически невозможно подобрать столь мощные стандартные переключатели, чтобы они выдерживали ток до 200 А. К174КН2 микросхема Другое дело - цепь первичной обмотки, где токи в пять раз меньше. После долгих поисков путем проб и ошибок был найден оптимальный вариант решения проблемы - просторно популярный тиристорный регулятор, схема которого изображена на рис.1. При предельной простоте и доступности элементной базы он прост в менеджменте, не требует настроек и хорошо зарекомендовал себя в работе - работает не иначе, как "часики". Регулирование мощности происходит при периодическом отключении на фиксированный промежуток времени первичной обмотки сварочного трансформатора на каждом полупериоде тока (рис.2). Среднее роль тока при этом уменьшается. Основные элементы регулятора (тиристоры) включены встречно и параллельно товарищ другу. Они поочередно открываются импульсами тока, формируемыми транзисторами...

Для схемы "ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ СТАРТЕРНЫХ БАТАРЕЙ АККУМУЛЯТОРОВ"

Автомобильная электроникаЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ СТАРТЕРНЫХ БАТАРЕЙ АККУМУЛЯТОРОВПростейшее зарядное устройство для автомобильных и мотоциклетных аккумуляторных батарей, как правило, состоит из понижающего трансформатора и подключенного к его вторичной двухполупериодного выпрямителя . Последовательно с батареей включают мощный реостат для установки необходимого тока. Однако такая конструкция получается очень громоздкой и излишне энергоемкой, а другое способы регулирования обычно ее существенно усложняют. В промышленных зарядных устройствах для выпрямления зарядного тока и изменения его значения иногда применяют тринисторы КУ202Г. Схемы на тс106-10 Здесь следует отметить, что прямое напряжение на включенных тринисторах при большом зарядном токе может добиваться 1,5 В. Из-за этого они сильно нагреваются, а по паспорту температура корпуса тринистора не должна превышать +85°С. В таких устройствах приходится принимать меры по ограничению и температурной стабилизации зарядного тока, что приводит к дальнейшему их усложнению и удорожанию.Описываемое ниже сравнительно простое зарядное устройство имеет широкие пределы регулирования - практически от нуля до 10 А - и может быть использовано для зарядки различных стартерных батарей аккумуляторов на напряжение 12 В. ...

ЭлектропитаниеВыпрямители с электронным регулятором для зарядки аккумуляторовВыпрямитель (рис. 1) собран по мостовой схеме на четырех диодах Д1 - Д4 типа Д305. Регулирование силы зарядного тока производится. при помощи мощного транзистора Т1 включенного по схеме составного триода. При изменении смещения, снимаемого на базу триода с потенциометра R1, изменяется сопротивление цепи коллектор-эмиттер транзистора. Зарядный ток при этом можно изменять от 25 ма до 6 а при напряжении на выходе выпрямителя от 1,5 до 14 в.Puc.1Резистор R2 на выходе выпрямителя позволяет устанавливать выходное напряжение выпрямителя при отключенной нагрузке. Трансформатор собран на сердечнике сечением 6 см квд. Первичная обмотка рассчитана на включение в сеть с напряжением 127 в (выводы 1-2) или 220 в (1-3) и содержит 350+325 витков провода ПЭВ 0,35, вторичная - 45 витков провода ПЭВ 1,5. Регулятор мощности на тс122 25 тока до 10 о транзисторы T1 и Т2 включены параллельно. Смещение на базы транзисторов, изменением которого регулируется зарядный ток, снимается с выпрямителя, выполненного на диодах Д5 - Д6. При зарядке 6-вольтовых аккумуляторов переключатель устанавливается в положение 1, 12-вольтовых - в положение 2.Puc.2Обмотки трансформатора содержат следующее количество витков: la - 328 витков ПЭВ 0,85; 1б - 233 витка ПЭВ 0,63; II - 41+...

Для схемы "Выпрямители с электронным регулятором для зарядки аккумуляторов"

Автомобильная электроникаВыпрямители с электронным регулятором для зарядки аккумуляторовВыпрямитель (рис. 1) собран по мостовой схеме на четырех диодах Д1 - Д4 типа Д305. Регулирование силы зарядного тока производится. при помощи мощного транзистора Т1 включенного по схеме составного триода. При изменении смещения, снимаемого на базу триода с потенциометра R1, изменяется сопротивление цепи коллектор-эмиттер транзистора. Зарядный ток при этом можно изменять от 25 ма до 6 а при напряжении на выходе выпрямителя от 1,5 до 14 в.Puc.1Резистор R2 на выходе выпрямителя позволяет устанавливать выходное напряжение выпрямителя при отключенной нагрузке. Трансформатор собран на сердечнике сечением 6 см квд. Первичная обмотка рассчитана на включение в сеть с напряжением 127 в (выводы 1-2) или 220 в (1-3) и содержит 350+325 витков провода ПЭВ 0,35, вторичная - 45 витков провода ПЭВ 1,5. Т160 схема регулятора тока Транзистор T1 устанавливают на металлическом радиаторе, площадь поверхности радиатора должна быть не менее 350 см.кв. Поверхность учитывается с обеих сторон пластины при толщине ее не менее 3 мм. Б. ВАСИЛЬЕВ Схема, приведенная на рис. 2, отличается от предыдущей тем, что с поставленной задачей увеличения максимального тока до 10 о транзисторы T1 и Т2 включены параллельно. Смещение на базы транзисторов, изменением которого регулируется зарядный ток, снимается с выпрямителя, выполненного на диодах Д5 - Д6. При зарядке 6-вольтовых аккумуляторов переключатель устанавливается в положение 1, 12-вольтовых - в положение 2.Puc.2Обмотки трансформатора содержат следующее количество витков: la - 328 витков ПЭВ 0,85; 1б - 233 витка ПЭВ 0,6...

Для схемы "Пусковое зарядное устройство"

Запуск двигателя автомобиля с изношенным аккумулятором в зимнее час требует много времени. Плотность электролита после длительного хранения существенно уменьшается, появление крупнокристаллической сульфатации повышает внутреннее сопротивление аккумулятора, снижая его стартовый ток. Вдобавок, зимой увеличивается вязкость машинного масла, что требует от источника пускового большей стартовой мощности.Выходов из этого положения несколько:- подогреть масло в картере; - "прикурить" от прочий машины с хорошим аккумулятором; - завести "с толкача"; - ожидать потепления.- использовать пусковое зарядное устройство (ПЗУ).Последний вариант наиболее предпочтителен при хранении автомобиля на платной стоянке или в гараже, где есть подводка сети Кроме того. ПЗУ позволит не только запустить автомашина, но и ускоренно воссоздать и зарядить не один аккумулятор.В большинстве промышленных ПЗУ стартовый аккумулятор подзаряжается от блока питания небольшой мощности (номинальный ток- 3...5 А), которого недостаточно для прямого отбора стартером автомобиля Хотя емкость внутренних стартерных аккумуляторов ПЗУ очень велика (до 240 Ач), после нескольких пусков они все равно "садятся", а ускоренно воссоздать их заряд невозможно. Дроздов схемы трансиверов Масса такого блока превышает 200 кг, так что подкатить его к машине нелегко и вдвоем.Пусковое зарядно-восстановительное устройство (ПЗВУ), предложенное лабораторией "Автоматики и телемеханики" иркутского Центра технического творчества молодежи, отличается от заводского прототипа небольшой массой и автоматически поддерживает рабочее состояние аккумулятора, независимо от времени хранения и времени использования. Даже при отсутствии внутреннего аккумулятора ПЗВУ способно кратковременно отдавать пусковой ток до 100 А. Режим регенерации представляет собой чередование равных по времени им-пульсов...

Для схемы "Преобразователя постоянного напряжения 12 В в переменное 220 В"

ЭлектропитаниеПреобразователя постоянного напряжения 12 В в переменное 220 В Антон Стоилов Предлагается схема преобразователя постоянного напряжения 12 В в переменное 220 В, который при подключении к автомобильному аккумулятору емкостью 44 А-ч может питать 100-ваттную нагрузку в течение 2-3 часов. Он состоит из задающего генератора на симметричном мультивибраторе VT1, VT2, нагруженного на мощные парафазные ключи VT3-VT8, коммутирующие ток в первичной обмотке повышающего трансформатора TV. VD3 и VD4 защищают мощные транзисторы VT7 и VT8 от перенапряжений при работе без нагрузки. Трансформатор выполнен на магнитопроводе Ш36х36, обмотки W1 и W1" имеют по 28 витков ПЭЛ 2,1, a W2 - 600 витков ПЭЛ 0,59, причем сначала мотают W2, а поверх нее двойным проводом (с поставленной задачей достижения симметрии полуобмоток) W1. При налаживании триммером RP1 добиваются минимальных искажений формы выходного напряжения "Радио Телевизия Електроника" N6/98, с. 12,13....

Для схемы "Зарядное устройство для 3-6-вольтовых аккумуляторов"

Предлагаемое зарядное устройство разработано для зарядки стабильным током в первую очередь шахтерских аккумуляторов, именуемых в народе "коногонкой". Саморазряд у этих аккумуляторов очень большой. А это означает, что уже через месяц, более того без нагрузки тот самый аккумулятор надобно заряжать. Устройство несложно доработать и для зарядки 12-вольтовых аккумуляторов, подходит оно (без доработки) и для зарядки 6-вольтовых аккумуляторов. Схема устройства очень проста (см. рисунок). Выпрямитель и трансформатор на схеме не показаны. Вторичная обмотка обеспечивает ток в нагрузке более 3 А при напряжении 12 В. Выпрямитель мостового типа на диодах Д242А, фильтрующий конденсатор - 2000 мкФх50 В (К50-6). Полевой транзистор типа КП302Б (2П302Б, КП302БМ) с начальным током стока 20-30 мА. Стабилитрон VD1 типа Д818 (Д809). Транзистор типа КТ825 с любой буквой. Его можно сменить схемой Дарлингтона, например, КТ818А и КТ814А и т.д. Фазоимпульсный регулятор мощности на кмоп Резистор R1 типа МЛТ-0,25; резистор R2 типа ППЗ-14, но полностью подойдет и с графитовым покрытием; R3 - проволочный (нихром - 0,056 Ом/см). Транзистор VT2 размещен на ребристом теплоотводе с охлаждающей поверхностью приблизительно 700 см. Электролитический конденсатор С1 любого типа. Конструктивно схема выполнена на печатной плате, расположенной вблизи транзистора VT2. Чтобы заряжать и 12-вольтовые аккумуляторы, следует предусмотреть вероятность увеличения на 6 В переменного напряжения на вторичной обмотке сетевого транзистора зарядного устройства. Данную схему использовали так же, как приставку к блоку питания (подойдет и не стабилизированный источник напряжения). Достоинство данной схемы - не боится коротких замыканий по выходу, поскольку представляет собой фактически генератор стабильного тока. Величина этого тока зависит в первую очередь от смещения,...

Для схемы "РЕЗЕРВНОЕ ЭЛЕКТРОПИТАНИЕ"

ЭлектропитаниеРЕЗЕРВНОЕ ЭЛЕКТРОПИТАНИЕЮ.ГУМЕНЮК, 275100, Украина, Черновицкая обл., п.Кельменцы, ул.Западная, 5, тел.2-17-59.В последнее пора появились перебои в снабжении электроэнергией. Бывает, что в селах свет подается 10...12 часов в сутки, что, безусловно, доставляет большие неудобства. Для устранения этих неудобств я предлагаю систему резервного электропитания. Стартерныи тракторный аккумулятор 6СТ132 при наличии сети 220 В заряжается от сетевого выпрямителя. Когда электроэнергия отключается, аккумулятор питает несколько ламп 12 Вх40 Вт (по сути дела, это аварийное освещение) и конвертор (преобразователь) постоянного напряжения 12 В в переменное 220 В (рис.1). На рис.2 приведена схема выпрямителя для зарядки аккумулятора. Регулировка заряда производится галетным переключателем S1 за счет изменения числа витков обмотки. Описание микросхемы 0401 Выпрямитель обеспечивает ток заряда 10...15 А. Трансформатор Т1 можно использовать любой с габаритной мощностью не менее 400 Вт. Первичная обмотка Т1 содержит 369+50+50+50+50 витков провода диаметром 0,7 мм. Вторичная обмотка содержит 38 витков провода диаметром 3 мм. Диоды выпрямительного мостика VD1...VD4 - любые с допустимым прямым током не менее 10 А. В цепь нагрузки включен амперметр РА1 с пределом измерения 20 А. Диоды VD1...VD4 надобно установить на радиатор площадью порядка 100 см.кв. Думаю, нелишне будет напомнить, что токи, протекающие в выпрямителе, значительны, поэтому провода к аккумулятору и нагрузке должны иметь соответствующее сечение (не менее 1 мм.кв.).Другим важным узлом системы резервного электропитания является преобразователь постоянно...

Иногда радиолюбителю в хозяйстве требуется простой регулируемый источник для испытания и настройки какой-нибудь аппаратуры, а также зарядки не капризных к режиму аккумуляторов.

Для этой цели вполне подойдёт лабораторный автотрансформатор – ЛАТР, который позволяет регулировать входное напряжения от нуля до максимума.

Можно приобрести ЛАТР, подключить к его выходу готовый выпрямитель, в виде диодного моста и конденсатора, а если требуется низкий уровень пульсаций, то добавить сглаживающий LC – фильтр.

Однако, такой источник имеет некоторые недостатки:

Первый недостаток можно устранить добавлением дополнительного развязывающего от сети трансформатора, что приведёт к увеличению второго недостатка.

Как –то интересовался в сети схемами регуляторов сварочного тока и наткнулся на такую схему:

На схеме видно, что мощный сварочный трансформатор регулируется по первичной обмотке встречно — включёнными мощными тиристорами VS1, VS2, которые образуют аналог симистора. Регулятор не нарушает работы трансформатора, переменным резистором R7 регулируется задержка открытия тиристоров, относительно начала полупериода сетевого напряжения, за счёт чего и происходит регулировка.

Так выглядит форма тока в первичной обмотке трансформатора:

Схему регулятора можно упростить, при этом количество компонентов схемы
уменьшается:

Подобный регулятор можно изготовить самостоятельно, а можно приобрести готовый, так как схема идентична имеющимся в продаже регуляторам для ламп накаливания – диммерам.

Фото самого диммера:


Возьмём сетевой понижающий трансформатор на 250Вт и соберём схему.

Остаётся дополнить схему простейшим выпрямителем и получаем такое простое, но универсальное устройство:

В итоге получился классический простейший блок питания, с функцией регулировки выходного напряжения. Данный блок можно использовать для питания и настройки разных конструкций, а также для зарядки автомобильных аккумуляторов.

Эту статью мне прислал автор канала Blaze Electronics , статья написана на основе этого видео. Особенно малопонимающим в электронике будет интересно

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках , так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства


Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20А\ч, АКБ 9А\ч зарядит за 7 часов, 20А\ч — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80А\Ч. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%.
На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки.
Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. Евровилку

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и СА\СА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150А\ч

Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку

Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.
С ув. Эдуард Орлов