Варианты наддува двигателей внутреннего сгорания. Классификация, общая характеристика способов наддува. О минусах применения турбокомпрессора

Наддув - увеличение количества свежего заряда горючей смеси, подаваемой в двигатель внутреннего сгорания, за счёт повышения давления при впуске. Позволяет повысит мощность двигателя.

Виды наддува

В ДВС применяют три типа наддува:резонансный –при котором используется кинетическая энергия объема воздуха во впускных коллекторах (нагнетатель в этом случае не нужен).

механический – в этом варианте компрессор приводится во вращение ремнем от двигателя.

газотурбинный (или турбонаддув) – турбина приводится в движение потоком отработавших газов.

Механический наддув. (воздух закачивается компрессором) .

Механические нагнетатели позволяют довольно простым способом существенно поднять мощность мотора. Имея привод непосредственно от коленчатого вала двигателя, компрессор способен закачивать воздух в цилиндры при минимальных оборотах и без задержки увеличивать давление наддува строго пропорционально оборотам мотора.

Существует два вида механических нагнетателей: объемные и центробежные.

Конструкция Roots напоминает масляный шестеренчатый насос. Два ротора вращаются в противоположные стороны внутри овального корпуса. Оси роторов связаны между собой шестернями. Особенность такой конструкции в том, что воздух сжимается не в нагнетателе, а снаружи – в трубопроводе, попадая в пространство между корпусом и роторами.

Еще один способ нагнетать во впускной коллектор воздух под избыточным давлением в свое время предложил инженер Лисхольм .

Внутри корпуса установлены два взаимодополняющих винтовых насоса (шнека). Вращаясь в разные стороны, они захватывают порцию воздуха, сжимают и загоняют ее в цилиндры. Характерна такая система внутренним сжатием и минимальными потерями, благодаря точно выверенным зазорам. Кроме того, винтовые наддувы эффективны практически во всем диапазоне оборотов двигателя, бесшумны, очень компактны, но чрезвычайно дороги из-за сложности в изготовлении.

Центробежные нагнетатели по конструкции напоминают турбонаддув. Избыточное давление во впускном коллекторе также создает компрессорное колесо (крыльчатка). Его радиальные лопасти захватывают и отбрасывают воздух в окружной тоннель при помощи центробежной силы. Отличие от турбонаддува лишь в приводе.

Схема управления механическим нагнетателем довольно проста. При полной нагрузке заслонка перепускного трубопровода закрыта, а дроссельная открыта - весь поток воздуха поступает в двигатель. При работе с частичной нагрузкой дроссельная заслонка закрывается, а заслонка трубопровода открывается - избыток воздуха возвращается на вход нагнетателя. Входящий в схему охладитель наддувочного воздуха (Intercooler) является почти непременной составной частью не только механических, но и газотурбинных систем наддува. При сжатии в компрессоре (либо в нагнетателе) воздух нагревается, в результате чего его плотность уменьшается. Это приводит к тому, что в рабочем объеме цилиндра воздуха, а, следовательно, и кислорода, по массе помещается меньше, чем могло бы поместиться при отсутствии нагревания. Поэтому сжатый воздух перед подачей его в цилиндры двигателя предварительно охлаждается в интеркулере. По своей конструкции это обычный радиатор, который охлаждается либо потоком набегающего воздуха, либо охлаждающей жидкостью. Понижение температуры наддувочного воздуха на 10 градусов позволяет увеличить его плотность примерно на 3%. Это, в свою очередь, позволяет увеличить мощность двигателя примерно на такой же процент.

Турбокомрессор.

Принцип действия турбокомпрессоров для наддува ДВС заключается в следующем - выхлопные газы ДВС, обладая большой скоростью и большой температурой попадают на сопловой аппарат турбины, где происходит их максимальный разгон и подача на рабочие лопатки турбины под правильным углом, при подаче на рабочие лопатки турбины происходит вращение турбины, которая в свою очередь вращает крыльчатку компрессора, насаженную на один вал с колесом турбины. Колесо компрессора представляет собой вращающий направляющий аппарат и крыльчатку, которые чаще всего соединены вместе в одну деталь.

Для того чтобы в объеме цилиндра сжечь больше топлива и получить в результате большую полезную мощность, необходимо пропорционально увеличить количество воздуха из условия α ≈ const. Эта задача нашла свое решение в наддуве. Наддувом называется увеличение заряда воздуха, подаваемого в цилиндр, за счет повышения его плотности в результате предварительного сжатия до давления P k >P o , и соответственно увеличение количества сжигаемого топлива. Степень форсировки дизелей наддувом оценивается “степенью наддува” λ н:

λ н = Р ен / Р е, (№1)

где Р е и Р ен — среднее эффективное давление двигателя без наддува и с наддувом.

Принципиально количество воздуха в цилиндре можно увеличить не только за счет его предварительного сжатия, но и за счет понижения температуры (удельный вес воздуха пропорционален Рк и обратно пропорцилнален Тк: γк / γо = Рк То / Ро Тк), а также повышением коэффициента наполнения цилиндра η н путем лучшей очистки цилиндра. Эти факторы используются при наддуве в комплексе. Так, после предварительного сжатия воздух охлаждается до температуры 30÷45 о С, после чего подается в цилиндр. Лучшая очистка цилиндра обеспечивается тщательной отработкой системы газообмена, использованием продувки камеры сгорания в 4-тактных ДВС.

Газотурбонагнетатель судового дизельного двигателя

Применение наддува позволило увеличить цилиндровую мощность дизелей в 4÷5 раз по сравнению с двигателями без наддува, однако потребовало решения ряда серьезных технических проблем, связанных с повышением механической и , ухудшением условий смазки, повышенными износами цилиндро-поршневой группы, согласованием характеристик агрегатов наддува и дизеля и т.д. Эти проблемы постоянно встают перед дизелестроителями при дальнейшей форсировке двигателей.

Различают следующие способы наддува:

  • Инерционный;
  • Механический;
  • Газотурбинный и комбинированный.

Попытки использования инерционного наддува имели место в начальный период форсировки 4-тактных ДВС. При этом каждый цилиндр снабжался специально подобранной длинной впускной трубой. Повышение давления воздуха в конце впуска достигалось благодаря кинетической энергии столба воздуха во впускной трубе и соответствующей организации в ней резонансных колебаний. Инерционный наддув позволял повысить мощность на 15÷25%.


Инерционный наддув судового двигателя

При механическом наддуве нагнетатель воздуха приводится в движение от коленчатого вала двигателя. В качестве нагнетателей применяются поршневые, ротационные или центробежные компрессоры, приводимые от коленчатого вала непосредственно или через передачу (зубчатую, цепную, электрическую ).

Наиболее широкое распространение в ДВС получили газотурбинный и комбинированный способы наддува. При газотурбинном наддуве для привода нагнетателя используется энергия выпускных газов. Газовая турбина и сидящий с ней на одном валу центробежный компрессор представляют собой единый агрегат — газотурбонагнетатель (ГТН). Газы из рабочих цилиндров, отдавая часть энергии газовой турбине, направляются далее в утилизационный котел и в атмосферу. Воздух, засасываемый из атмосферы, сжимается в компрессоре до давления Рк, подается в холодильник воздуха и затем — в продувочный ресивер и в рабочие цилиндры. При незначительном сжатии в компрессоре, когда температура не поднимается выше 45÷50 о С, холодильник может отсутствовать.

Под комбинированным наддувом подразумевается система, использующая одновоременно газотурбинный и механический наддув. К ней прибегают в случаях, когда мощность газовых турбин недостаточна для привода нагнетателя. Частным случаем механического нагнетателя является использование рабочих цилиндров крейц-копфных двигателей совместно с газотурбонагнетателем.


Механический наддув судового дизельного двигателя

Оценка степени совершенства той или иной системы наддува может быть дана на основе качественного анализа механического КПД двигателя. Для двигателя без наддува можно написать зависимость;

ηмех = Ne/ Ni = (Ni — Nмex) / Ni = 1 — Nмex / Ni:

η мех = 1 — N мех / Ni

При инерционном наддуве при прочих равных условиях мощность механических потерь двигателя N мех не изменится, а возрастет без каких- либо дополнительных энергетических затрат на привод нагнетателя воздуха. Следовательно, механический КПД двигателя увеличится. Тем не менее, инерционный наддув не нашел применения в судовых дизелях из-за грамоздкости впускной системы и сравнительно невысокого уровня форсировки.

В двигателе с механическим наддувом мощность механических потерь возрастает на величину NB затрат на привод нагнетателя воздуха; механический КПД равен:

η мн мех = 1 — ((N мех +Nв) / (Ni + ΔNi)), (№2)

где Ni + ΔNi = N iн — индикаторная мощность двигателя с наддувом.

Очевидно, что всякое увеличение мощности дизеля требует повышения давления наддува Рк. При этом возрастает и мощность Nв на привод воздушного нагнетателя. Если индикаторная мощность возрастает более интенсивно, чем мощность механических потерь, то механический КПД растет. В таком случае при возрастании Рк растет и среднее эффективное давление Ре н: Ре н = Pi н η мн мех .

При достижении определенного уровня форсировки затраты на привод механического воздушного нагнетателя начинают расти более интенсивно, чем приращение индикаторной мощности; механический КПД снижается. Несмотря на увеличение Рк, среднее эффективное давление при этом может даже уменьшится (если степень снижени η мех превосходит степень приращения Pi). В предельном случае механического наддува можно создать двигатель, у которого вся индикаторная работа будет поглощаться компрессором, механический и эффективный КПД будут равны нулю.

По опытным данным, граница обоснованного увеличения Ан при чисто механическом наддуве находится в пределах:

λн = 1,2÷1,3.

При этом Рк = 1,3÷1,5 или η мн мех = 0,70÷0,85.

При дальнейшей форсировке двигателей на привод нагнетателя требуется слишком большая мощность, что снижает η мех и η е. По этой причине в современных двигателях чисто механический наддув не применяется. Его можно встретить в двигателях старой конструкции (ЗД-100, 37Д, ДР 30/50, ДР 43/61 и др.).

Задача повышения мощности и крутящего момента двигателя была актуальна всегда. Мощность двигателя напрямую связана с рабочим объемом цилиндров и количеством подаваемой в них топливо-воздушной смеси. Т.е., чем больше в цилиндрах сгорает топлива, тем более высокую мощность развивает силовой агрегат. Однако самое простое решение – повысить мощность двигателя путем увеличения его рабочего объема приводит к увеличению габаритов и массы конструкции.

Количество подаваемой рабочей смеси можно поднять за счет увеличения оборотов коленчатого вала (другими словами, реализовать в цилиндрах за единицу времени большее число рабочих циклов), но при этом возникнут серьезные проблемы, связанные с ростом сил инерции и резким увеличением механических нагрузок на детали силового агрегата, что приведет к снижению ресурса мотора. Наиболее действенным способом в этой ситуации является наддув.

Представим себе такт впуска двигателя внутреннего сгорания: мотор в это время работает как насос, к тому же весьма неэффективный – на пути воздуха находится воздушный фильтр, изгибы впускных каналов, в бензиновых моторах – еще и дроссельная заслонка. Все это, безусловно, снижает наполнение цилиндра. Ну а что требуется, чтобы его повысить? Поднять давление перед впускным клапаном – тогда воздуха в цилиндре “поместится” больше. При наддуве улучшается наполнение цилиндров свежим зарядом, что позволяет сжигать в цилиндрах большее количество топлива и получать за счет этого более высокую агрегатную мощность двигателя.

В ДВС применяют три типа наддува:

  • резонансный –при котором используется кинетическая энергия объема воздуха во впускных коллекторах (нагнетатель в этом случае не нужен)
  • механический – в этом варианте компрессор приводится во вращение ремнем от двигателя
  • газотурбинный (или турбонаддув) – турбина приводится в движение потоком отработавших газов.

У каждого способа свои преимущества и недостатки, определяющие область применения.

Как уже отмечалось в начале статьи, для лучшего наполнения цилиндра следует поднять давление перед впускным клапаном. Между тем повышенное давление необходимо вовсе не постоянно – достаточно, чтобы оно поднялось в момент закрытия клапана и «догрузило» цилиндр дополнительной порцией воздуха. Для кратковременного повышения давления вполне подойдет волна сжатия, «гуляющая» по впускному трубопроводу при работе мотора. Достаточно лишь рассчитать длину самого трубопровода, чтобы волна, несколько раз отразившись от его концов, пришла к клапану в нужный момент.

Теория проста, а вот воплощение ее требует немалой изобретательности: клапан при разных оборотах коленчатого вала открыт неодинаковое время, а потому для использования эффекта резонансного наддува требуются впускные трубопроводы переменной длины. При коротком впускном коллекторе мотор лучше работает на высоких оборотах, при низких оборотах более эффективен длинный впускной тракт. Переменные длины впускных трубопроводов можно создать двумя способами: или путем подключения резонансной камеры, или через переключение на нужный впускной канал или его подключение. Последний вариант называют еще динамическим наддувом. Как резонансный, так и динамический наддув могут ускорить течение впускного столба воздуха.

Эффекты наддува, создаваемые за счет колебаний напора воздушного потока, находится в диапазоне от 5 до 20 миллибар. Для сравнения: с помощью турбонаддува или механического наддува можно получить значения в диапазоне между 750 и 1200 миллибар. Для полноты картины отметим, что существует еще инерционный наддув, при котором основным фактором создания избыточного давления перед клапаном является скоростной напор потока во впускном трубопроводе. Дает незначительную прибавку мощности при высоких (больше 140 км/ч) скоростях движения. Используется в основном на мотоциклах.

Механические нагнетатели (по англ. supercharger) позволяют довольно простым способом существенно поднять мощность мотора.
Имея привод непосредственно от коленчатого вала двигателя, компрессор способен закачивать воздух в цилиндры при минимальных оборотах без задержки увеличивать давление наддува строго пропорционально оборотам мотора. Но у них есть и недостатки. Они снижают КПД ДВС, так как на их привод расходуется часть мощности, вырабатываемой силовым агрегатом. Системы механического наддува занимают больше места, требуют специального привода (зубчатый ремень или шестеренчатый привод) и издают повышенный шум.


Существует два вида механических нагнетателей: объемные и центробежные.

Типичными представителемя объемных нагнетателей являются нагнетатель Roots и компрессор Lysholm.

Конструкция Roots напоминает масляный шестеренчатый насос. Два ротора вращаются в противоположные стороны внутри овального корпуса. Оси роторов связаны между собой шестернями. Особенность такой конструкции в том, что воздух сжимается не в нагнетателе, а снаружи – в трубопроводе, попадая в пространство между корпусом и роторами. Основной недостаток – в ограниченном значении наддува. Как бы безупречно ни были подогнаны детали нагнетателя, при достижении определенного давления воздух начинает просачиваться назад, снижая КПД системы. Способов борьбы немного: увеличить скорость вращения роторов либо сделать нагнетатель двух- и даже трехступенчатым.

Таким образом можно повысить итоговые значения до приемлемого уровня, однако многоступенчатые конструкции лишены своего главного достоинства – компактности. Еще одним минусом является неравномерное нагнетание на выходе, ведь воздух подается порциями. В современных конструкциях применяются трехзубчатые роторы спиральной формы, а впускное и выпускное окна имеют треугольную форму. Благодаря этим ухищрениям нагнетатели объемного типа практически избавились от пульсирующего эффекта. Невысокие скорости вращения роторов, а следовательно, долговечность конструкции вкупе с низким шумом привели к тому, что ими щедро оснащают свою продукцию такие именитые бренды, как DaimlerChrysler, Ford и General Motors.

Объемные нагнетатели поднимают кривые мощности и крутящего момента, не изменяя их формы. Они эффективны уже на малых и средних оборотах, а это наилучшим образом сказывается на динамике разгона. Проблема лишь в том, что подобные системы очень прихотливы в изготовлении и установке, а значит, довольно дороги.

Еще один способ нагнетать во впускной коллектор воздух под избыточным давлением в свое время предложил инженер Лисхольм (Lysholm). Его детище окрестили винтовым нагнетателем, или «double screw» (двойной винт). Конструкция наддува Лисхольма чем-то напоминает обычную мясорубку.
Внутри корпуса установлены два взаимодополняющих винтовых насоса (шнека). Вращаясь в разные стороны, они захватывают порцию воздуха, сжимают и загоняют ее в цилиндры. Характерна такая система внутренним сжатием и минимальными потерями, благодаря точно выверенным зазорам.
Кроме того, винтовые наддувы эффективны практически во всем диапазоне оборотов двигателя, бесшумны, очень компактны, но чрезвычайно дороги из-за сложности в изготовлении. Однако ими не брезгуют такие именитые тюнинг-ателье, как AMG или Kleemann.

Центробежные нагнетатели по конструкции напоминают турбонаддув. Избыточное давление во впускном коллекторе также создает компрессорное колесо (крыльчатка). Его радиальные лопасти захватывают и отбрасывают воздух в окружной тоннель при помощи центробежной силы. Отличие от турбонаддува лишь в приводе. Центробежные нагнетатели страдают аналогичным, хотя и менее заметным инерционным пороком, но есть и еще одна важная особенность. Фактически величина производимого давления пропорциональна квадрату скорости компрессорного колеса.

Проще говоря, вращаться оно должно очень быстро, чтобы надуть в цилиндры необходимый воздушный заряд, порой в десятки раз превышая обороты двигателя. Эффективен центробежный нагнетатель на высоких оборотах. Механические «центробежники» не так капризны в обслуживании и долговечнее газодинамических собратьев, поскольку работают при менее экстремальных температурах. Неприхотливость, а следовательно, и дешевизна конструкции снискали им популярность в сфере любительского тюнинга.

Схема управления механическим нагнетателем довольно проста. При полной нагрузке заслонка перепускного трубопровода закрыта, а дроссельная открыта - весь поток воздуха поступает в двигатель. При работе с частичной нагрузкой дроссельная заслонка закрывается, а заслонка трубопровода открывается - избыток воздуха возвращается на вход нагнетателя. Входящий в схему охладитель наддувочного воздуха (Intercooler) является почти непременной составной частью не только механических, но и газотурбинных систем наддува.

При сжатии в компрессоре (либо в нагнетателе) воздух нагревается, в результате чего его плотность уменьшается. Это приводит к тому, что в рабочем объеме цилиндра воздуха, а, следовательно, и кислорода, по массе помещается меньше, чем могло бы поместиться при отсутствии нагревания. Поэтому сжатый воздух перед подачей его в цилиндры двигателя предварительно охлаждается в интеркулере. По своей конструкции это обычный радиатор, который охлаждается либо потоком набегающего воздуха, либо охлаждающей жидкостью. Понижение температуры наддувочного воздуха на 10 градусов позволяет увеличить его плотность примерно на 3%. Это, в свою очередь, позволяет увеличить мощность двигателя примерно на такой же процент.

Газотурбинный наддув

Более широко на современных автомобильных двигателях применяются турбокомпрессоры. По сути, это тот же центробежный компрессор, но с другой схемой привода. Это самое важное, можно сказать, принципиальное отличие механических нагнетателей от “турбо”. Именно схема привода в значительной мере определяет характеристики и области применения тех или иных конструкций. У турбокомпрессора крыльчатка-нагнетатель сидит на одном валу с крыльчаткой-турбиной, которая встроена в выпускной коллектор двигателя и приводится во вращение отработавшими газами. Частота вращения может превышать 200.000 об./мин. Прямой связи с коленвалом двигателя нет, и управление подачей воздуха осуществляется за счёт давления отработавших газов.

К достоинствам турбонаддува относят: повышение КПД и экономичности мотора (механический привод отбирает мощность у двигателя, этот же использует энергию отработавших газов, следовательно, КПД увеличивает). Не следует путать удельную и общую экономичность мотора. Естественно, для работы двигателя, мощность которого возросла за счет применения турбонаддува, требуется больше топлива, чем для аналогичного безнаддувного мотора меньшей мощности. Ведь наполнение цилиндров воздухом улучшают, как мы помним, для того, чтобы сжечь в них большее количество топлива. Но массовая доля топлива, приходящаяся на единицу мощности в час у двигателя, оснащенного ТК, всегда ниже, чем у схожего по конструкции силового агрегата, лишенного наддува.

Турбонаддув дает возможность достичь заданных характеристик силового агрегата при меньших габаритах и массе, чем в случае применения “атмосферного” двигателя. Кроме того, у турбодвигателя лучше экологические показатели. Наддув камеры сгорания приводит к снижению температуры и, следовательно, уменьшению образования оксидов азота. В бензиновых двигателях наддувом добиваются более полного сгорания топлива, особенно на переходных режимах работы. В дизелях дополнительная подача воздуха позволяет отодвинуть границу возникновения дымности, т. е. бороться с выбросами частиц сажи.

Дизели существенно лучше приспособлены к наддуву вообще, и к турбонаддуву в частности. В отличие от бензиновых моторов, в которых давление наддува ограничивается опасностью возникновения детонации, им такое явление неведомо. Дизель можно наддувать вплоть до достижения предельных механических нагрузок в его механизмах. К тому же отсутствие дросселирования воздуха на впуске и высокая степень сжатия обеспечивают большее давление отработавших газов и их меньшую температуру в сравнении с бензиновыми моторами. В общем, как раз то, что нужно для применения турбокомпрессора. Турбокомпрессоры более просты в изготовлении, что окупает ряд присущих им недостатков.

При низкой частоте вращения двигателя количество отработавших газов невелико, соответственно, эффективность работы компрессора невысока. Кроме того, турбонаддувный двигатель, как правило, имеет т. н. «турбояму» (по-английски “turbo-lag”) - замедленный отклик на увеличение подачи топлива. Вам нужно резко ускориться - вдавливаете педаль газа в пол, а двигатель некоторое время «думает» и лишь потом подхватывает. Объяснение простое - требуется время, пока мотор наберет обороты, увеличится давление выхлопных газов, раскрутится турбина, с ней крыльчатка нагнетателя – и наконец, “пойдет” воздух. Избавиться от указанных недостатков конструкторы пытаются разными способами. В первую очередь, снижением массы вращающихся деталей турбины и компрессора. Ротор современного турбокомпрессора настолько мал, что легко умещается на ладони.

Снижение массы достигается не только конструкцией ротора, но и выбором для него соответствующих материалов. Основная сложность при этом- высокая температура отработавших газов. Металлокерамический ротор турбины примерно на 20% легче изготовленного из жаростойких сплавов, да к тому же обладает меньшим моментом инерции. До последнего времени срок службы всего агрегата ограничивала долговечность подшипников. По сути, это были вкладыши, подобные вкладышам коленчатого вала, которые смазывались маслом под давлением. Износ таких подшипников скольжения был, конечно, велик, однако шариковые не выдерживали огромной частоты вращения и высоких температур. Выход нашли когда удалось разработать подшипники с керамическими шариками. Однако достойно удивления не применение керамики – подшипники заполнены постоянным запасом пластичной смазки, то есть канал от штатной масляной системы двигателя уже не нужен!

Избавиться от недостатков турбокомпрессора позволяет не только уменьшение инерционности ротора, но и применение дополнительных, иногда довольно сложных схем управления давлением наддува. Основные задачи при этом - уменьшение давления при высоких оборотах двигателя и повышение его при низких. Полностью решить все проблемы можно использованием турбины с изменяемой геометрией (Variable Nozzle Turbine), например, с подвижными (поворотными) лопатками, параметры которой можно менять в широких пределах.

Принцип действия VNT турбокомпрессора заключается в оптимизации потока выхлопных газов, направляемых на крыльчатку турбины. На низких оборотах двигателя и малом количестве выхлопных газов VNT турбокомпрессор направляет весь поток выхлопных газов на колесо турбины, тем самым увеличивая ее мощность и давление наддува. При высоких оборотах и высоком уровне газового потока турбокомпрессор VNT располагает подвижные лопатки в открытом положении, увеличивая площадь сечения и отводя часть выхлопных газов от крыльчатки, защищая себя от превышения оборотов и поддерживая давление наддува на необходимом двигателю уровне, исключая перенаддув.

Комбинированные системы

Помимо одиночных систем наддува сейчас часто встречается и двухступенчатый наддув. Первая ступень - приводной компрессор - обеспечивает эффективный наддув на малых оборотах ДВС, а вторая - турбонагнетатель - утилизирует энергию выхлопных газов. После достижения силовым агрегатом достаточных для нормальной работы турбины оборотов, компрессор автоматически выключается, а при их падении вновь вступает в действие.

Ряд производителей устанавливают на свои моторы сразу два турбокомпрессора. Такие системы называют «битурбо» или «твинтурбо». Принципиальной разницы в них нет, за одним лишь исключением. «Битурбо» подразумевает использование разных по диаметру, а следовательно и производительности, турбин. Причем алгоритм их включения может быть как параллельным, так и последовательным (секвентальным). На низких оборотах быстро раскручивается и вступает в работу турбонаддув маленького диаметра, на средних к нему подключается «старший брат».

Таким образом, выравнивается разгонная характеристика автомобиля. Система дорогостоящая, поэтому ее можно встретить на престижных автомобилях, например Maserati или Aston Martin. Основная задача «твинтурбо» заключается не в сглаживании «турбоямы», а в достижении максимальной производительности. При этом используются две одинаковые турбины. Устанавливаются «твин-» и «битурбо» как на V-образные блоки, так и на рядные моторы. Варианты подключения турбин также идентичны системе «битурбо». В чем же смысл? Дело в том, что производительность турбины напрямую зависит от двух ее параметров: диаметра и скорости вращения. Оба показателя весьма капризны. Увеличение диаметра приводит к повышению инерционности и, как следствие, к пресловутой «турбояме». Скорость же турбины ограничивается допустимыми нагрузками на материалы. Поэтому две скромные и менее инерционные турбины могут оказаться эффективнее одной большой.

Во-первых, вовремя меняйте масло и масляный фильтр. Во-вторых, используйте только масло, предназначенное для двигателей, оборудованных турбонаддувом, которое изначально рассчитано на более высокие температуры, чем обычное. Но в дороге всякое может случиться, и если вам пришлось залить неизвестное масло, то не гоните, двигайтесь потихоньку. Двигатель это масло переживет, а вот турбонаддув - не обязательно. Приехав домой, сразу же смените масло и масляный фильтр.

И, наконец, третье, самое главное условие нормальной работы турбонаддува. В жизни турбины есть два самых ответственных момента: запуск двигателя и его остановка. При запуске холодного двигателя масло в нем имеет высокую вязкость, оно с трудом прокачивается по зазорам; еще не установились тепловые зазоры; нагрев разных деталей компрессора, а следовательно, и тепловое расширение, идут с разной скоростью. Поэтому не спешите, дайте двигателю прогреться.

Если вам надо остановиться, никогда не глушите двигатель сразу. В зависимости от режима езды дайте ему поработать на холостом ходу 2-5 минут (зимой можно дольше). За это время вал турбины снизит обороты до минимальных, а детали, непосредственно соприкасающиеся с выхлопными газами, плавно остынут. В этой ситуации значительно облегчает жизнь турбо-таймер. Он проследит за тем, чтобы разгоряченный двигатель автомобиля поработал несколько минут на холостом ходу, остужая элементы турбонаддува, даже если владелец уже покинул и закрыл своё авто. Впрочем, подобную функцию имеют и многие охранные сигнализации.

Оглавление - - Назначение системы наддува Форсирование двигателя Типы систем наддува. Инерционный и волновой наддув Типы систем наддува. Электрический и Механический наддув. - Механический наддув. Поршневой наддув - Механический наддув. Мембранный наддув - Механический наддув. Винтовой наддув - Механический наддув. Система наддува ROOTS - Принцип работы системы ROOTS - Схема насосного действия роторов в системе ROOTS Типы систем наддува. Турбонаддув. Устройство турбонаддува. Принцип действия турбонаддува. Регулировка турбонаддува в бензиновом двигателе. - Регулирование турбонаддува с перепуском ОГ - Регулирование турбонаддува с изменяемой геометрией турбины - Регулирование турбонаддува с дросселированной турбиной

Оглавление - Устройство системы наддува в двигателе VW Golf 1. 4 TSI Схема работы наддува двигателя VW Golf 1. 4 TSI Диапазон работы компрессоров Скоростные характеристики двигателя VW Golf 1. 4 TSI Схема прироста мощности двигателя VW Golf 1. 4 TSI Элементы системы наддува. Турбокомпрессор. Элементы системы наддува. Выпускной коллектор. Элементы системы наддува. Охладитель нагнетаемого воздуха. Элементы системы наддува. Вестгейт. Элементы системы наддува. Клапан Blow-off. Элементы системы наддува. Система управления. Многоступенчатый наддув. Переключаемый наддув. Двухступенчатый наддув.

Форсирование двигателя - увеличение частоты вращения коленчатого вала - увеличение коэффициента наполнения Система наддува используется, как средство увеличения КПД двигателя: Повысить термический КПД - увеличение степени сжатия - большой риск возникновения детонации - сложная кинематика механизма Повысить индикаторный КПД: - оптимальное соотношение смеси: топлива и воздуха - качественное приготовление смеси - уменьшение потерь тепла

Форсирование двигателя Повысить эффективный КПД: - уменьшение длины юбки поршня, количества и высоты колец - Уменьшение количества приводимых от коленчатого вала агрегатов - уменьшение потерь на трение в двигателе - обеспечение быстрого прогрева двигателя и поддержанием оптимальной температуры при работе.

Типы систем наддува Инерционный наддув- давление в тракте создается при помощи набегающего потока воздуха Преимущества: сглаживает завихрения воздушного потока. эффективен при высоких скоростях Недостатки: быстро засоряется воздушный фильтр необходима определенная настройка системы питания. Волновой наддув- повышение коэффициента наполнения, за счет перепада давлений, между открытыми впускным и выпускным клапанами в фазе продувки за счет использования волновых эффектов Преимущества: эффективен при очень узком диапазоне оборотов Недостатки: Высокая стоимость.

Типы систем наддува Электрический наддув- требует мощного электродвигателя Преимущества: - Доступность - Прост в эксплуатации Недостатки: - Малая эффективность - Проблема обеднение подаваемой топливовоздушной смеси Механический наддув - в котором требуемая на сжатие воздуха мощность отбирается от коленчатого вала двигателя (механическая связь двигатель/нагнетатель). Преимущества: - Существенно повышает наполнение цилиндров топливовоздушной смесью - Понижает степень сжатия, что понижает детонацию - Усиление шатунно-поршневой группы Недостатки: - Забирает часть мощности с двигателя на вращение крыльчаток компрессора - Высокая стоимость

Типы систем наддува. Механический наддув. Поршневой нагнетатель поршень сжимает воздух, который потом подается через выпускной клапан к цилиндрам двигателя. 1. 2. 3. 4. 5. Впускной клапан Выпускной клапан Поршень Приводной (коленчатый)вал Картер нагнетателя

Механический наддув. Мембранный нагнетатель мембрана сжимает воздух, который через выпускной клапан подается в двигатель 1. 2. 3. 4. Впускной клапан Выпускной клапан Мембрана Приводной (кулачковый) вал

Механический наддув. Винтовой нагнетатель. воздух сжимают две лопасти, имеющие форму винта и вращающиеся на встречу другу 1. 2. 3. 4. Приводной вал Подача воздуха на сжатие Подача сжатого воздуха Винтообразные лопасти

Механический наддув. Нагнетатели системы ROOTS основу данной конструкции представляют два вращающихся ротора, приводимых в движение шестернями. 1. Корпус нагнетателя 2. Ротор - - Преимущества: Нагнетатель обеспечивает более высокий крутящий момент при более низком числе оборотов Имеет меньшее запаздывание по времени Хорошая чувствительность Недостатки: Давно не используется

Типы систем наддува Турбонаддув - в котором требуемая на сжатие воздуха мощность отбирается от ОГ (газодинамическая связь двигатель/нагнетатель); Преимущества: - Высокие температуры, приводят к более эффективной работе - Замена кривошипно-шатунного, деталей системы топливо отдачи, впускного и выпускного коллектора Недостатки: - Еще большая стоимость по сравнению с механическим нагнетателем - Отбирает часть мощности двигателя за счет возрастания противодавления на выпуске - Проблема инерционности - Высокий износ подшипников Различают два принципа наддува - Наддув с постоянным давлением - турбина может пропускать больше отработавших газов, при меньшем давлении, в области повышенных нагрузок двигателя Сокращает расход топлива Импульсный наддув обеспечивает более высокий крутящий момент на низких частотах вращения коленчатого вала

Устройство турбонаддува 1. Канал подачи ОГ 2. Крыльчатка турбины 3. Подвижная лопатка соплового аппарата 4. Патрубок подачи разрежения 5. Кольцо регулирования подвижных лопаток соплового аппарата 6. Подача смазки 7. Подача свежего воздуха к нагнетателю 8. Подача сжатого воздуха к двигателю

Регулировка турбонаддува в бензиновом двигателе. 1 - датчик частоты вращения коленчатого вала; 2 - охладитель наддувоч-ного воздуха; 3 - датчик давления наддува; 4 - клапан перепуска воздуха; 5 - калиброванное отверстие; 6 - измеритель расхода воздуха; 7 - соленоидный клапан; 8 - сервопривод перепускного клапана (мембранное устройство); 9 - турбокомпрессор; 10 - клапан перепуска газов мимо турбины; 11 - выпускной коллектор; 12 - датчик детонации; 13 - микропроцессор; 14 - датчик-указатель положения дроссельной заслонки; 15 - впускной коллектор; 16- датчик температуры воздуха.

Регулирование турбонаддува Для того, чтобы при больших скоростях отработавших газов, нагнетатель, не перегружали двигатель и сам не выходил из строя, давление наддува необходимо регулировать, для этого используют три конструктивных варианта: - Нагнетатель с перепуском отработавших газов при высоких нагрузках на двигатель, часть потока отработавших газов, направляется мимо турбины, прямо в систему выпуска отработавших газов. 1. Электропневматический преобразователь давления наддува 2. Вакуумный насос 3. Исполнительный механизм перепускного клапана 4. Корпус турбины 5. Перепускной клапан 6. Канал подачи ОГ к турбине 7. Канал подачи сжатого воздуха во впускной тракт 8. Газовая турбина 9. Компрессор

Регулирование турбонаддува Нагнетатель с изменяемой геометрией турбины дает возможность ограничить поток отработавших газов через турбину при высокой частоте вращения коленчатого вала а- Положение направляющих лопаток при высокой скорости потока ОГ b- Положение направляющих лопаток при низкой скорости потока ОГ 1. Крыльчатка турбины 2. Управляющее кольцо 3. Подвижные направляющие лопатки соплового аппарата 4. Управляющий рычаг 5. Управляющий пневматический цилиндр 6. Поток ОГ Высокая скорость потока ОГ Низкая скорость потока ОГ

Регулирование турбонаддува с изменяемой геометрией турбины Преимущества: - Возможность регулирования поступления потока отработавших газов через крыльчатки турбины - Безопасен, при отказе системы управления, ни нагнетатель, ни двигатель не повреждается. Недостатки: - Используется, только на дизельных двигателях.

Регулирование турбонаддува. Нагнетатель с изменяемой геометрией турбины Налаживающее кольцо Поддержив ающее кольцо Ведущая пластина вал Переменная лопасть Изменение контроля Контролирующа я пластина Соединение с вакуумной единицей

- Регулирование турбонаддува Нагнетатель с дросселированной турбиной регулировочная заслонка постепенным открытием подводимых каналов изменяет в этой конструкции проходное сечение для потока отработавших газов к турбине а - открыт один подводной канал b - открыты два подводных канала 1. Газовая турбина 2. Подводной канал 3. Подводной канал 4. Регулировочная заслонка 5. Перепускной канал 6. Тяга управления заслонкой

Регулирование турбонаддува Нагнетатель с дросселированной турбиной Преимущества: - Способность регулирования частоты вращения вала турбины - Наличие перепускного клапана, дает возможность отвести поток ОГ от турбины.

Аномальное сгорание - топлива Детонация – очень быстрое сгорание топлива в точках, удаленных от свечи, сопровождаемое резким местным перегревом и перегрузкой деталей двигателя. - Калильное зажигание – преждевременное воспламенение смеси от перегретых деталей камеры сгорания. Последствия аномального сгорания топлива - Прогар поршня, - Прогар гильзы, - Закоксовывание масла, - Перегрев двигателя.

Устройство системы наддува в двигателе VW Golf 1. 4 FSI Из воздушного фильтра (1) воздух поступает в компрессор (2), затем в Турбонагнетатель (3), а оттуда через трубопровод интеркулера (4) во впускной коллектор (5).

Элементы системы наддува 1. Турбокомпрессор (турбина) – нагнетает воздух в двигатель под давлением. увеличивает мощность двигателя Подача масла корпус Переменная лопасть Выхлопной выход Колесо турбины Поток воздуха из двигателя Налаживающее кольцо Нагнетающее колесо Поступающий воздух

Элементы системы наддува 2. Выпускной коллектор присоединяет турбину к двигателю Коллекторы выполняются из чугуна или из нержавеющей жаропрочной стали

Элементы системы наддува 3. Охладитель наддувного воздуха похоже на радиатор устанавливается между турбиной и впускным коллектором предназначено для охлаждения бывают типы «воздух-воздух» и «воздух-вода» .

Элементы системы наддува 4. Вестгейт (wastegate) – перепускной клапан стравливает лишнее давление выхлопных газов до турбины бывают различного диаметра проходного сечения (38 – 60 мм) стравливают газы в атмосферу либо в выпускную систему после турбины.

Элементы системы наддува 5. Клапан BLOW-OFF устанавливается между турбиной и впускным трубопроводом стравливает лишнее давление воздуха при переключении передач

Элементы системы наддува 6. Система управления. Устанавливается для управления подачей топлива и картой зажигания. Существуют системы управления (АБИТ и др.) которые можно настраивать под конкретный автомобиль.

Многоступенчатый наддув позволяет: существенно расширить пределы регулирования мощности, удается улучшить, как подачу воздуха в цилиндры, так и удельный расход топлива Переключаемый наддув При увеличивающейся нагрузке на двигатель, есть возможность подключения одного или нескольких нагнетателей. Преимущества - достижение двух, или больше, максимумов КПД Недостатки - Дороговизна системы, переключения нагнетателей

Двухступенчатый наддув последовательное подключение двух турбонагнетателей различной мощности, оснащенных байпасным регулированием. Преимущества: - быстрота достижения высокого уровня наддува - простота регулирования 1. Ступень низкого давления (турбонагнетатель с охлаждением наддувочного воздуха) 2. Ступень высокого давления (турбонагнетатель с охлаждением наддувочного воздуха) 3. Впускной коллектор 4. Выпускной коллектор 5. Перепускной клапан 6. Перепускная магистраль

Задача повышения мощностных характеристик силового агрегата была актуальна всегда. Методов улучшения мощности мотора есть довольно много, к примеру, возможно увеличить габаритные размеры цилиндров, численность и количество оборотов мотора. Однако все вышеприведенные методы приводят к существенному увеличению габаритных размеров и веса силового агрегата, а также повышению нагрузки на его конструктивные элементы.

Существует гораздо эффективнее метод улучшения мощностных характеристик мотора. Сама идея довольно проста: чем больше удастся «затолкать» воздуха в цилиндр силового агрегата, тем больше возможно сжечь горючего и как следствие получить повышение мощности мотора. Данный метод именуется – наддув двигателя. Главным его преимуществом выступает тот факт, что габаритные размеры и вес мотора остается прежними, но его мощностные характеристики будут более высокими.

В обычном силовом агрегате горючая смесь подается в цилиндры, при давлении, которое значительно меньше атмосферного. При этом нужно учитывать наличие «препятствий» для прохождения горючей смеси в виде дроссельной заслонки, воздушного фильтрующего элемента, поворотов и шероховатой поверхности стенок каналов. Выполняя наддув двигателя давление, под которым подается горючее значительно повышается, что позволяет получить высокую мощность мотора.

Применение механической схемы

Механические нагнетатели воздуха с целью увеличения мощности силового агрегата использовались на транспортных средствах еще в 30-х годах. Тогда такие устройства именовались компрессорами. В настоящее время их преимущественно называют турбокомпрессорами, о которых, собственно пойдет речь дальше. Стоит отметить что механических конструкций такого плана достаточно много, но несмотря на это разработка новых модификаций актуальна и сейчас.


На выше представленном рисунке показаны нагнетатели воздуха со стандартной конструкцией механического типа. Такие турбокомпрессоры отличаются простой конструкционной схемой и не сложны в эксплуатации.

Однако существуют и не совсем обычные нагнетатели воздуха, разработанные различными компаниями. Одним из них является – волновой нагнетатель воздуха «Comprex» разработанный компанией Asea-Brown-Boweri. Ротор данного турбокомпрессора обладает аксиально размещенными ячейками. При вращательных движениях ротора в камеры попадает воздух, после этого она подходит к отверстию в корпусе и через него в ячейку попадают горячие отработанные газы из силового агрегата. Взаимодействуя с холодным воздухом образовывается волна давления, которая движется с высокой скоростью, за счет чего воздух вытесняется в отверстие выпускного трубопровода, к которому камера за этот промежуток времени успевает подойти. Так как ротор все время крутится отработанные газы в данное отверстие не попадают, а выходят по ходу движения ротора в следующее. Такие нагнетатели применялись многими производителями автомобильных транспортных средств, к примеру, Mazda их применяет на некоторых моделях машин с 1987 года.

Еще одной интересной разработкой выступает спиральный нагнетатель – G40. Впервые она были использована немецким производителем автомобилей Volkswagen в 1985 году.

В 1988 году появилась новая модификация спирального нагнетателя воздуха G-60, которая обладала более высокой мощностью и применялась на автомобилях Corrado и Passat.


Конструкционно такие нагнетатели состоят из двух спиралей, первая из которых стационарна и выступает в качестве части корпуса. Вторая спираль играет роль вытеснителя и размещена между двумя витками первой. Данная спираль крепится на валу. Вал в действие приводится за счет ременной передачи силового агрегата с отношением одного к двум.

Принцип работы такой конструкции довольно прост и заключается в следующем: во время вращения вала спираль находящиеся внутри корпуса осуществляет колебательные движения и между ними образовываются серповидные полости, движущееся к центру и тем самым перемещают воздух с периферии в мотор под низким давлением. При этом количество подаваемого сжатого воздуха напрямую зависит от частоты вращения вала мотора.

Такая схема нагнетателя имеет два важных преимущества: достаточно высокий КПД и износоустойчивость (за счет отсутствия трущихся конструкционных элементов).


Применение турбокомпрессоров

В настоящее время с целью улучшения мощностных характеристик силового агрегата используют не механические нагнетатели воздуха, а турбокомпрессоры. Такие устройства гораздо проще в производстве, что окупает ряд недостатков, которые им присущи.

Современные турбокомпрессоры от выше приведенных схем прежде всего отличаются по своим конструкционным особенностям и принципу работы привода. В данном случае применяется ротор с лопатками, то есть турбина, вращаемая за счет воздействия потока отработанных газов силового агрегата. Турбина вращает вмонтированный на том же валу компрессор, представленный в виде колеса, оснащенного лопатками.

Такой принцип действия привода, определяет главные недостатки газового компрессора. Следует отметить, что в данном случае частота вращения мотора довольно низкая, а значит и количество отработанных газов тоже небольшое, что негативно влияет на производительность работы турбокомпрессора.


Помимо двигатель с установленным турбокомпрессором, чаще всего имеет так называемую , то есть замедленный отклик мотора на увеличение количества подаваемого горячего. Водителю при этом нужно резко нажать педаль газа до упора, а силовой агрегат реагирует лишь спустя определенное время. Объяснение у такого явления довольно простое – необходимо определенное количество времени на раскрутку турбины, которая отвечает за вращение компрессора.

Максимально нивелировать выше наведенные недостатки турбокомпрессоров разработчики пытались различными методами. И в первую очередь была уменьшена масса конструктивных вращающихся элементов компрессора и самой турбины. Ротор компрессора, применяемого в настоящее время стал настолько малогабаритным, что вмещается на ладони. К тому же легкий по массе ротор значительно повышает эффективность работы компрессора даже при низких оборотах силового агрегата.

Однако уменьшение размеров конструктивных деталей, не единственный метод улучшения эффективности работы газового компрессора. Сегодня для их изготовления применяются новые материалы, которые помогают снизить массу элементов ротора, что позволяет улучшить его работу. К примеру, довольно часто для этих целей используют спичечный карбид кремния, который обладает устойчивостью к воздействию высоких температур и при этом имеет легкий вес.

То есть с уверенностью можно сказать, что современные турбокомпрессоры лишены многих недостатков предыдущих моделей подобных устройств. Благодаря чему такие установки с успехом используются на автомобильных транспортных средствах от разных производителей. Выбор турбо нагнетателей воздуха должен осуществляться исходя из изначальной мощности машины, а также финансовых возможностей владельца автомобиля. Установка таких агрегатов строго должна вестись на СТО либо автомастерских.


Что лучше выбрать механический нагнетатель воздуха или турбокомпрессор

Увеличение скоростных показателей своего автомобиля – весьма актуальный вопрос для многих владельцев транспортных средств. Сегодня данную задачу можно решить многими способами, но наибольшим спросом пользуется установка механического нагнетателя воздуха или турбо компрессора. Так какой из этих двух вариантов лучший? На данный вопрос попробуем ответит в данной статье.

Для этой цели изначально нужно разобраться с принципом работы механического и газового компрессора.

Принцип и особенности работы механической схемы


Таких устройств существует несколько видов:

  1. Объемный нагнетатели воздуха. Такие установки подают воздух в силовой агрегат одинаковыми порциями в независимости от скоростного режима, что является преимуществом при езде на низких оборотах мотора;
  2. Механические схемы внешнего сжатия воздуха. Такие компрессоры прекрасно подходят там, где есть необходимость в большом количестве подаваемого воздуха на невысоких оборотах мотора. Недостатком такого подхода является наличие возможности создания обратного оттока воздуха, так как компрессор сам по себе не обеспечивает нужного давления. К тому же такие установки имеют низкий КПД;
  3. Установки внутреннего сжатия. Их применение актуально на высоких оборотах силового агрегата, к тому же эффект обратного оттока воздуха гораздо меньший. Недостатками таких схем выступают: достаточно высокая стоимость (по причине высоких требований относительно материала исполнения) и возможность заклинивания, особенно в случае перегрева;
  4. Динамические нагнетатели воздуха. Такие установки работают лишь по достижению определенного количества оборотов, но при этом их КПД гораздо выше в сравнении с выше наведенными установками.

Поскольку механические нагнетатели воздуха функционируют за счет коленчатого вала мотора посредством дополнительного привода, обороты компрессора напрямую зависят от оборотов силового агрегата.

Особенности работы турбокомпрессора

Такие нагнетатели воздуха функционируют за счет энергии, полученной от выбросов отработанных газов. По своей сути турбокомпрессор – сочетание центробежного компрессора и самой турбины (колеса, оснащенного лопатками).

Принцип его действия заключается в следующем: отработанные газы с большой скоростью вращают турбину, которая вмонтирована на валу. На другом конце вала вмонтирован центробежный насос, основная задача которого заключается в нагнетании большого количества воздуха в цилиндры.

В современных компрессорах с целью охлаждения воздуха, который подается в турбину, применяют интеркулер.

Недостатки и преимущества механического и газового компрессора


Турбокомпрессор прекрасно подходит для применения с целью обогащения кислородом топлива. Однако и такие схемы обладают своими недостатками:

  1. турбина представлена в виде стационарного устройства и соответственно есть необходимость в привязке к силовому агрегату транспортного средства;
  2. на невысоких оборотах мотора, такой компрессор не способен обеспечит большую скорость, а лишь на высоких его работа эффективна;
  3. при переходе с низких на высокие обороты часто образуется так называемая «турбояма», при этом чем выше мощность турбокомпрессора, тем значительней будет данный эффект.

Стоит отметить, что в настоящее время можно купить турбокомпрессор, который будет отлично справляться со своей основной задачей как на низких, так и на высоких оборотах силового агрегата. Однако их цена достаточно высокая, как на само оборудование, так и на обслуживание. Но несмотря на это многие владельцы отдают предпочтение именно турбокомпрессорам.

Механические нагнетатели воздуха в свою очередь проще в монтаже и обслуживании. Работают такие устройства как на низких, так и на высоких оборотах. Кроме этого они требуют слишком больших временных и финансовых затрат при восстановлении и ремонте. Это объясняется тем, что в отличие от турбокомпрессора, механический нагнетатель является независимым устройством.

Турбина помимо своей дороговизны и сложности в установке, также довольно требовательна к качеству и техническим характеристикам используемой топливной смеси.

У механических нагнетателей воздуха есть существенная проблема – достаточно большой расход горючего, при относительно невысоком коэффициенте полезного действия. Но при этом они проще в конструкционном плане и в обслуживании.

При этом выбор той или иной установки зависит только от водителя и его пожеланий, а также изначальных характеристик машины.

Видео